重点大学计算机专业系列教材:数据挖掘原理与算法(第2版)

重点大学计算机专业系列教材:数据挖掘原理与算法(第2版) 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
毛国君 等 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-20

图书介绍


出版社: 清华大学出版社
ISBN:9787302158769
版次:2
商品编码:10155810
品牌:清华大学
包装:平装
开本:16开
出版时间:2007-12-01
用纸:胶版纸
页数:329


类似图书 点击查看全场最低价

相关图书





图书描述

编辑推荐

  《数据挖掘原理与算法》(第2版)共分8章,各章相对独立成篇,以利于读者选择性学习。在每章后面都设置专门一节来对本章内容和文献引用情况进行归纳,它不仅可以帮助读者对相关内容进行整理,而且也起到对本内容相关文献的注释性索引功能。第1章是绪论,系统地介绍了数据挖掘产生的商业和技术背景,从不同侧面剖析了数据挖掘的概念和应用价值;第2章给出了知识发现的过程分析和应用体系结构设计;第3章对关联规则挖掘的原理和算法进行全面阐述;第4章给出分类的主要理论和算法描述;第5章讨论聚类的常用技术和算法;第6章对时问序列分析技术和序列挖掘算法进行论述;第7章系统地介绍了Web挖掘的主要研究领域和相关技术及算法;第8章是对空间数据挖掘技术和算法的分析和讲述……

内容简介

  本书是一本全面介绍数据挖掘和知识发现技术的专业书籍,它系统地阐述了数据挖掘和知识发现技术的产生、发展、应用以及相关概念、原理和算法,对数据挖掘中的主要技术分支,包括关联规则、分类、聚类、序列、空间以及web挖掘等进行了理沦剖析和算法描述。本书的许多内容是作者们在攻读博士学位期间的工作总结,一方面,对于相关概念和技术的阐述尽量先从理论分析人手,在此基础上进行技术归纳;另一方面,为了保证技术的系统性,所有的挖掘模型和算法描述都在统一的技术归纳框架下进行。同时,为了避免抽象算法描述给读者带来的理解困难,本书的所有典型算法都通过具体跟踪执行实例来进一步说明。
  本书共分8章,各章相对独立成篇,以利于读者选择性学习。在每章后面都设置专门一节来对本章内容和文献引用情况进行归纳,它不仅可以帮助读者对相关内容进行整理,而且也起到对本内容相关文献的注释性索引功能。第1章是绪论,系统地介绍了数据挖掘产生的商业和技术背景,从不同侧面剖析了数据挖掘的概念和应用价值;第2章给出了知识发现的过程分析和应用体系结构设计;第3章对关联规则挖掘的原理和算法进行全面阐述;第4章给出分类的主要理论和算法描述;第5章讨论聚类的常用技术和算法;第6章对时间序列分析技术和序列挖掘算法进行论述;第7章系统地介绍了Web挖掘的主要研究领域和相关技术及算法;第8章是对空间数据挖掘技术和算法的分析和讲述。
  本书可作为计算机专业研究生或高年级本科生教材,也可以作为从事计算机研究和开发人员的参考资料。作为教材,教师可以根据课时安排进行选择性教学。为了更好地让教师进行选择性教学,本书配有专门的教师用书,对内容的重点、难点和课时分配给出了对应的建议,对重要的和难度较大的习题进行了分析和解答。对于研究人员,本书是一本高参考价值的专业书籍。对于软件技术人员,可以把它当作提高用书或参考资料,一些算法可以通过改造用于实际的应用系统中。

目录

第1章绪论
1.1数据挖掘技术的产生与发展
1.1.1数据挖掘技术的商业需求分析
1.1.2数据挖掘产生的技术背景分析
1.2数据挖掘研究的发展趋势
1.3数据挖掘概念
1.3.1从商业角度看数据挖掘技术
1.3.2数据挖掘的技术含义
1.3.3数据挖掘研究的理论基础
1.4数据挖掘技术的分类问题
1.5数据挖掘常用的知识表示模式与方法
1.5.1广义知识挖掘
1.5.2关联知识挖掘
1.5.3类知识挖掘
1.5.4预测型知识挖掘
1.5.5特异型知识挖掘
1.6不同数据存储形式下的数据挖掘问题
1.6.1事务数据库中的数据挖掘
1.6.2关系型数据库中的数据挖掘
1.6.3数据仓库中的数据挖掘
1.6.4在关系模型基础上发展的新型数据库中的数据
挖掘
1.6.5面向应用的新型数据源中的数据挖掘
1.6.6Web数据源中的数据挖掘
1.7粗糙集方法及其在数据挖掘中的应用
1.7.1粗糙集的一些重要概念
1.7.2粗糙集应用举例
1.7.3粗糙集方法在KDD中的应用范围
1.8数据挖掘的应用分析
1.8.1数据挖掘与CRM
1.8.2数据挖掘应用的成功案例分析
1.9本章小结和文献注释
习题1
第2章知识发现过程与应用结构
2.1知识发现的基本过程
2.1.1数据抽取与集成技术要点
2.1.2数据清洗与预处理技术要点
2.1.3数据的选择与整理技术要点
2.1.4数据挖掘技术要点
2.1.5模式评估技术要点
2.2数据库中的知识发现处理过程模型
2.2.1阶梯处理过程模型
2.2.2螺旋处理过程模型
2.2.3以用户为中心的处理模型
2.2.4联机KDD模型
2.2.5支持多数据源多知识模式的KDD处理模型
2.3知识发现软件或工具的发展
2.3.1独立的知识发现软件
2.3.2横向的知识发现工具集
2.3.3纵向的知识发现解决方案
2.3.4KDD系统介绍
2.4知识发现项目的过程化管理
2.5数据挖掘语言介绍
2.5.1数据挖掘语言的分类
2.5.2数据挖掘查询语言
2.5.3数据挖掘建模语言
2.5.4通用数据挖掘语言
2.5.5DMQL挖掘查询语言介绍
2.6本章小结和文献注释
习题2
第3章关联规则挖掘理论和算法
3.1基本概念与解决方法
3.2经典的频繁项目集生成算法分析
3.2.1项目集空间理论
3.2.2经典的发现频繁项目集算法
3.2.3关联规则生成算法
3.3Apriori算法的性能瓶颈问题
3.4Apriori的改进算法
3.4.1基于数据分割(Partition)的方法
3.4.2基于散列(Hash)的方法
3.4.3基于采样(Sampling)的方法
3.5对项目集空间理论的发展
3.5.1Close算法
3.5.2FP�瞭ree算法
3.6项目集格空间和它的操作
3.7基于项目集操作的关联规则挖掘算法
3.7.1关联规则挖掘空间
3.7.2三个实用算子
3.7.3最大频繁项目集格的生成算法
3.7.4ISS�睤M算法执行示例
3.8改善关联规则挖掘质量问题
3.8.1用户主观层面
3.8.2系统客观层面
3.9约束数据挖掘问题
3.9.1约束在数据挖掘中的作用
3.9.2约束的类型
3.10时态约束关联规则挖掘
3.11关联规则挖掘中的一些更深入的问题
3.11.1多层次关联规则挖掘
3.11.2多维关联规则挖掘
3.11.3数量关联规则挖掘
3.12数量关联规则挖掘方法
3.12.1数量关联规则挖掘问题
3.12.2数量关联规则的分类
3.12.3数量关联规则挖掘的一般步骤
3.12.4数值属性离散化问题及算法
3.13本章小结和文献注释
习题3
第4章分类方法
4.1分类的基本概念与步骤
4.2基于距离的分类算法
4.3决策树分类方法
4.3.1决策树基本算法概述
4.3.2ID3算法
4.3.3C4.5算法
4.4贝叶斯分类
4.4.1贝叶斯定理
4.4.2朴素贝叶斯分类
4.4.3EM算法
4.5规则归纳
4.5.1AQ算法
4.5.2CN2 算法
4.5.3FOIL算法
4.6与分类有关的其他问题
4.6.1分类数据预处理
4.6.2分类器性能的表示与评估
4.7本章小结和文献注释
习题4
第5章聚类方法
5.1概述
5.1.1聚类分析在数据挖掘中的应用
5.1.2聚类分析算法的概念与基本分类
5.1.3距离与相似性的度量
5.2划分聚类方法
5.2.1k�财骄�算法
5.2.2PAM
5.2.3其他方法
5.3层次聚类方法
5.3.1AGNES算法
5.3.2DIANA算法
5.3.3其他聚类方法
5.4密度聚类方法
5.5其他聚类方法
5.5.1STING算法
5.5.2SOM算法
5.5.3COBWEB算法
5.5.4模糊聚类算法FCM
5.6本章小结和文献注释
习题5
第6章时间序列和序列模式挖掘
6.1时间序列及其应用
6.2时间序列预测的常用方法
6.2.1确定性时间序列预测方法
6.2.2随机时间序列预测方法
6.2.3其他方法
6.3基于ARMA模型的序列匹配方法
6.3.1基本概念
6.3.2利用基本概念建立模型
6.3.3构造判别函数
6.4基于离散傅里叶变换的时间序列相似性查找
6.4.1完全匹配
6.4.2子序列匹配
6.5基于规范变换的查找方法
6.5.1基本概念
6.5.2查找方法
6.6序列挖掘
6.6.1基本概念
6.6.2数据源的形式
6.6.3序列模式挖掘的一般步骤
6.7AprioriAll 算法
6.8AprioriSome 算法
6.9GSP算法
6.10本章小结和文献注释
习题6
第7章Web挖掘技术
7.1Web挖掘的意义
7.2Web挖掘的分类
7.3Web挖掘的含义
7.3.1Web挖掘与信息检索
7.3.2Web挖掘与信息抽取
7.4Web挖掘的数据来源
7.4.1服务器日志数据
7.4.2在线市场数据
7.4.3Web页面
7.4.4Web页面超链接关系
7.4.5其他信息
7.5Web内容挖掘方法
7.5.1爬虫与Web内容挖掘
7.5.2虚拟的Web视图
7.5.3个性化与Web内容挖掘
7.5.4对Web页面内文本信息的挖掘
7.5.5对Web页面内多媒体信息挖掘
7.5.6Web页面内容的预处理
7.6Web访问信息挖掘方法
7.6.1Web访问信息挖掘的特点
7.6.2Web访问信息挖掘的意义
7.6.3Web访问信息挖掘的数据源
7.6.4Web访问信息挖掘的预处理
7.6.5其他信息的预处理技术
7.6.6在Web访问挖掘中的常用技术
7.6.7Web访问信息挖掘的要素构成
7.6.8利用Web访问信息挖掘实现用户建模
7.6.9利用Web访问信息挖掘发现导航模式
7.6.10利用Web访问信息挖掘改进访问效率
7.6.11利用Web访问信息挖掘进行个性化服务
7.6.12利用Web访问信息挖掘进行商业智能发现
7.6.13利用Web访问信息挖掘进行用户移动模式发现
7.6.14利用协作推荐的方法实现实时个性化推荐的例子
7.7Web结构挖掘方法
7.7.1页面重要性的评价方法
7.7.2页面等级
7.7.3权威页面和中心页面
7.7.4Web站点结构的预处理
7.8本章小结和文献注释
习题7
第8章空间挖掘
8.1引言
8.2空间数据概要
8.2.1空间数据的复杂性特征
8.2.2空间查询问题
8.2.3空间数据结构
8.2.4专题地图
8.3空间数据挖掘基础
8.4空间统计学
8.5泛化与特化
8.5.1逐步求精
8.5.2泛化
8.5.3最临近方法
8.5.4统计信息网格方法STING
8.6空间规则
8.7空间分类算法
8.7.1ID3扩展
8.7.2空间决策树
8.8空间聚类算法
8.8.1基于随机搜索的聚类方法CLARANS扩展
8.8.2大型空间数据库基于距离分布的聚类算法DBCLASD
8.8.3BANG
8.8.4小波聚类
8.8.5近似值
8.9空间挖掘的其他问题
8.10空间数据挖掘原型系统介绍
8.11空间数据挖掘的研究现状
8.12空间数据挖掘的研究与发展方向
8.13空间数据挖掘与相关学科的关系
8.13.1空间数据挖掘与空间数据库
8.13.2空间数据挖掘与空间数据仓库
8.13.3空间数据挖掘与空间联机分析处理
8.13.4空间数据挖掘与地理信息系统
8.14数字地球
8.15本章小结和文献注释
习题8
参考文献

前言/序言


重点大学计算机专业系列教材:数据挖掘原理与算法(第2版) 下载 mobi epub pdf txt 电子书 格式

重点大学计算机专业系列教材:数据挖掘原理与算法(第2版) mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

重点大学计算机专业系列教材:数据挖掘原理与算法(第2版) 下载 mobi pdf epub txt 电子书 格式 2025

重点大学计算机专业系列教材:数据挖掘原理与算法(第2版) 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

不错~~~

评分

很满意,值的购买,好评

评分

重点大学计算机专业系列教材数据挖掘原理与算法(第2版)和描述的一样,好评!上周周六,闲来无事,上午上了一个上午网,想起好久没买书了,似乎我买书有点上瘾,一段时间不逛书店就周身不爽,难道男人逛书店就象女人逛商场似的上瘾于是下楼吃了碗面,这段时间非常冷,还下这雨,到书店主要目的是买一大堆书,上次专程去买却被告知缺货,这次应该可以买到了吧。可是到一楼的查询处问,小姐却说昨天刚到的一批又卖完了!晕!为什么不多进点货,于是上京东挑选书。好了,废话不说。好了,我现在来说说这本书的观感吧,一个人重要的是找到自己的腔调,不论说话还是写字。腔调一旦确立,就好比打架有了块趁手的板砖,怎么使怎么顺手,怎么拍怎么有劲,顺带着身体姿态也挥洒自如,打架简直成了舞蹈,兼有了美感和韵味。要论到写字,腔调甚至先于主题,它是一个人特有的形式,或者工具不这么说,不这么写,就会别扭工欲善其事,必先利其器,腔调有时候就是器,有时候又是事,对一篇文章或者一本书来说,器就是事,事就是器。这本书,的确是用他特有的腔调表达了对腔调本身的赞美。|发货真是出乎意料的快,昨天下午订的货,第二天一早就收到了,赞一个,书质量很好,正版。独立包装,每一本有购物清单,让人放心。帮人家买的书,周五买的书,周天就收到了,快递很好也很快,包装很完整,跟同学一起买的两本,我们都很喜欢,谢谢!了解京东2013年3月30日晚间,京东商城正式将原域名360更换为,并同步推出名为的吉祥物形象,其首页也进行了一定程度改版。此外,用户在输入域名后,网页也自动跳转至。对于更换域名,京东方面表示,相对于原域名360,新切换的域名更符合中国用户语言习惯,简洁明了,使全球消费者都可以方便快捷地访问京东。同时,作为京东二字的拼音首字母拼写,也更易于和京东品牌产生联想,有利于京东品牌形象的传播和提升。京东在进步,京东越做越大。||||好了,现在给大家介绍两本本好书谢谢你离开我是张小娴在想念后时隔两年推出的新散文集。从拿到文稿到把它送到读者面前,几个月的时间,欣喜与不舍交杂。这是张小娴最美的散文。美在每个充满灵性的文字,美在细细道来的倾诉话语。美在作者书写时真实饱满的情绪,更美在打动人心的厚重情感。从装祯到设计前所未有的突破,每个精致跳动的文字,不再只是黑白配,而是有了鲜艳的色彩,首次全彩印刷,法国著名唯美派插画大师,亲绘插图。|两年的等待加最美的文字,就是你面前这本最值得期待的新作。洗脑术怎样有逻辑地说服他人全球最高端隐秘的心理学课程,彻底改变你思维逻辑的头脑风暴。白宫智囊团、美国、全球十大上市公司总裁都在秘密学习!当今世界最高明的思想控制与精神绑架,政治

评分

内容有点深奥,需要些数学基础,慢慢读

评分

内容很好,值得买,值得学习

评分

很好的书籍很好的学习必备佳品,,,,希望宣传能给力的,能越做也好,下次还会在来的额,京东给了我不一样的生活,这本书籍给了我不一样的享受,体会到了购物的乐趣,让我深受体会啊。

评分

打开书本[SM],[ZZ]装帧精美,纸张很干净,文字排版看起来非常舒服非常的惊喜,让人看得欲罢不能,每每捧起这本书的时候 似乎能够感觉到作者毫无保留的把作品呈现在我面前。 [BJTJ]作业深入浅出的写作手法能让本人犹如身临其境一般,好似一杯美式咖啡,看似快餐,其实值得回味 无论男女老少,第一印象最重要。”[NRJJ]从你留给别人的第一印象中,就可以让别人看出你是什么样的人。[SZ]所以多读书可以让人感觉你知书答礼,颇有风度。 多读书,可以让你多增加一些课外知识。培根先生说过:“知识就是力量。”不错,多读书,增长了课外知识,可以让你感到浑身充满了一股力量。这种力量可以激励着你不断地前进,不断地成长。从书中,你往往可以发现自己身上的不足之处,使你不断地改正错误,摆正自己前进的方向。所以,书也是我们的良师益友。 多读书,可以让你变聪明,变得有智慧去战胜对手。书让你变得更聪明,你就可以勇敢地面对困难。让你用自己的方法来解决这个问题。这样,你又向你自己的人生道路上迈出了一步。 多读书,也能使你的心情便得快乐。读书也是一种休闲,一种娱乐的方式。读书可以调节身体的血管流动,使你身心健康。[QY]所以在书的海洋里遨游也是一种无限快乐的事情。用读书来为自己放松心情也是一种十分明智的。 读书能陶冶人的情操,给人知识和智慧。所以,我们应该多读书,为我们以后的人生道路打下好的、扎实的基础!读书养性,读书可以陶冶自己的性情,使自己温文尔雅,具有书卷气;读书破万卷,下笔如有神,多读书可以提高写作能力,写文章就才思敏捷;旧书不厌百回读,熟读深思子自知,读书可以提高理解能力,只要熟读深思,你就可以知道其中的道理了;读书可以使自己的知识得到积累,君子学以聚之。总之,爱好读书是好事。让我们都来读书吧。 其实读书有很多好处,就等有心人去慢慢发现. 最大的好处是可以让你有属于自己的本领靠自己生存。 最后在好评一下京东客服服务态度好,送货相当快,包装仔细!这个也值得赞美下 希望京东这样保持下去,越做越好

评分

希望你能越做越好,成长有你有我大家一起来,很好的宝贝。

评分

不好,一拿到书以为是二手的

类似图书 点击查看全场最低价

重点大学计算机专业系列教材:数据挖掘原理与算法(第2版) mobi epub pdf txt 电子书 格式下载 2025


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有