数学经典教材:向量微积分、线性代数和微分形式(第3版)(影印版) [Vector Calculus,Linear Algebra,and Differential Forms:A Unified Ap

数学经典教材:向量微积分、线性代数和微分形式(第3版)(影印版) [Vector Calculus,Linear Algebra,and Differential Forms:A Unified Ap 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
[美] 哈伯德(Hubbard J.H.) 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-29

图书介绍


出版社: 世界图书出版公司
ISBN:9787510061509
版次:3
商品编码:11352185
包装:平装
外文名称:Vector Calculus,Linear Algebra,and Differential Forms:A Unified Approach 3rd Edition
开本:16开
出版时间:2013-10-01
用纸:胶版


类似图书 点击查看全场最低价

相关图书





图书描述

内容简介

  《数学经典教材:向量微积分、线性代数和微分形式(第3版)(影印版)》是一部优秀的微积分教材,好评不断。《数学经典教材:向量微积分、线性代数和微分形式(第3版)(影印版)》材料的选择和编排有不同于标准方法的三点:(一)在这个水平的研究中,线性代数是研究多变量微积分的极其方便的环境和语言,非线性更像是一个衍生产品;(二)强调计算有效算法,并且通过这些算术工作来证明定理;(三)运用微分形式推广更高维的积分定理。
  目次:预备知识;向量、矩阵和导数;解方程;流形、泰勒多项式和二次型、曲率;积分;流形的体积;形式和向量微积分。附录:分析。
  《数学经典教材:向量微积分、线性代数和微分形式(第3版)(影印版)》读者对象:数学专业的本科生以及想学习微积分知识的广大非专业专业人士。

内页插图

目录

Preface

Chapter 0 preliminaries
0.0 introduction
0.1 reading mathematics
0.2 quantifiers and negation
0.3 set theory
0.4 functions
0.5 real numbers
0.6 infinite sets
0.7 complex numbers

Chapter 1 vectors~matrices, and derivatives
1.0 introduction
1.1 introducing the actors: points and vectors
1.2 introducing the actors: matrices
1.3 matrix multiplication as a linear transformation
1.4 the geometry of rn
1.5 limits and continuity
1.6 four big theorems
1.7 derivatives in several variables as lineartransformations
1.8 rules for computing derivatives
1.9 the mean value theorem and criteria for differentiability
1.10 review exercises for Chapter 1

Chapter 2 solving equations
2.0 introduction
2.1 the main algorithm: row reduction
2.2 solving equations with row reduction
2.3 matrix inverses and elementary matrices
2.4 linear combinations, span, and linear independence
2.5 kernels, images, and the dimension formula
2.6 abstract vector spaces
2.7 eigenvectors and eigenvalues
2.8 newton's method
2.9 superconvergence
2.10 the inverse and implicit function theorems
2.11 review exercises for Chapter 2

Chapter 3 manifolds, Taylor polynomials, quadratic forms, and curvature
3.0 introduction
3.1 manifolds
3.2 tangent spaces
3.3 Taylor polynomials in several variables
3.4 rules for computing Taylor polynomials
3.5 quadratic forms
3.6 classifying critical points of fimctions
3.7 constrained critical points and lagrange multipliers
3.8 geometry of curves and surfaces
3.9 review exercises for Chapter 3

Chapter 4 integration
4.0 introduction
4.1 defining the integral
4.2 probability and centers of gravity
4.3 what functions can be integrated?
4.4 measure zero
4.5 fhbini's theorem and iterated integrals
4.6 numerical methods of integration
4.7 other pavings
4.8 determinants
4.9 volumes and determinants
4.10 the change of variables formula
4.11 lebesgue integrals
4.12 review exercises for Chapter 4

Chapter 5 volumes of manifolds
5.0 introduction
5.1 parallelograms and their volumes
5.2 parametrizations
5.3 computing volumes of manifolds
5.4 integration and curvature
5.5 fractals and fractional dimension
5.6 review exercises for Chapter 5

Chapter 6 forms and vector calculus
6.0 introduction
6.1 forms on rn
6.2 integrating form fields over parametrized domains
6.3 orientation of manifolds
6.4 integrating forms over oriented manifolds
6.5 forms in the language of vector calculus
6.6 boundary orientation
6.7 the exterior derivative
6.8 grad, curl, div, and all that
6.9 electromagnetism
6.10 the generalized stokes's theorem
6.11 the integral theorems of vector calculus
6.12 potentials
6.13 review exercises for Chapter 6

Appendix: analysis
A.0 introduction
A.1 arithmetic of real numbers
A.2 cubic and quartic equations
A.3 two results in topology: nested compact sets and heine-borel
A.4 proof of the chain rule
A.5 proof of kantorovich's theorem
A.6 proof of lemma 2.9.5 (superconvergence)
A.7 proof of differentiability of the inverse function
A.8 proof of the implicit function theorem
A.9 proving equality of crossed partials
A.10 functions with many vanishing partial derivatives
A.11 proving rules for Taylor polynomials; big o and little o
A.12 Taylor's theorem with remainder
A.13 proving theorem 3.5.3 (completing squares)
A.14 geometry of curves and surfaces: proofs
A.15 Stirling's formula and proof of the central limittheorem
A.16 proving fubiul's theorem
A.17 justifying the use of other pavings
A.18 results concerning the determinant
A.19 change of variables formula: a rigorous proof
A.20 justifying volume 0
A.21 lebesgue measure and proofs for lebesgue integrals
A.22 justifying the change of parametrization
A.23 computing the exterior derivative
A.24 the pullback
A.25 proving stokes's theorem

bibliography
photo credits
index

前言/序言



数学经典教材:向量微积分、线性代数和微分形式(第3版)(影印版) [Vector Calculus,Linear Algebra,and Differential Forms:A Unified Ap 下载 mobi epub pdf txt 电子书 格式

数学经典教材:向量微积分、线性代数和微分形式(第3版)(影印版) [Vector Calculus,Linear Algebra,and Differential Forms:A Unified Ap mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

数学经典教材:向量微积分、线性代数和微分形式(第3版)(影印版) [Vector Calculus,Linear Algebra,and Differential Forms:A Unified Ap 下载 mobi pdf epub txt 电子书 格式 2024

数学经典教材:向量微积分、线性代数和微分形式(第3版)(影印版) [Vector Calculus,Linear Algebra,and Differential Forms:A Unified Ap 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

这是一本对物理研究人员非常有用的参考书与教材。

评分

是英文版的!!

评分

好。。。。。。。。。

评分

书很厚,内容很详实,推荐

评分

不是研究生别买 不是研究生别买

评分

配送太差。不催不给送。催的话就说送的货太多,让等。

评分

书本质量很好快递送货很快

评分

不错不错价格很合适

评分

一百好几十呀,没办法,谁让他是经典呢。

类似图书 点击查看全场最低价

数学经典教材:向量微积分、线性代数和微分形式(第3版)(影印版) [Vector Calculus,Linear Algebra,and Differential Forms:A Unified Ap mobi epub pdf txt 电子书 格式下载 2024


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.cndgn.com All Rights Reserved. 新城书站 版权所有