国外数学名著系列50(续一 影印版) 动力系统5:分歧理论和突变理论 [Dynamical Systems V: Bifurcation Theory and Catastrophe Theory]

国外数学名著系列50(续一 影印版) 动力系统5:分歧理论和突变理论 [Dynamical Systems V: Bifurcation Theory and Catastrophe Theory] 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
V.I.Arnol'd(Ed.) 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-29

图书介绍


出版社: 科学出版社有限责任公司
ISBN:9787030234933
版次:1
商品编码:11896200
包装:精装
丛书名: 国外数学名著系列(续一)(影印版)50
外文名称:Dynamical Systems V: Bifurcation Theory and Catastrophe Theory
开本:16开
出版时间:2009-01-01


类似图书 点击查看全场最低价

相关图书





图书描述

内容简介

  Both bifurcation theory and catastrophe theory are studies of smooth systems,tbcusing on properties that seem manifestly non-smooth. Bifurcations are sudden changes that occur in a system as one or more parameters are varied.Catastrophe theory is accurately described as singularity theory and its applications.
  These two theories are important tools in the study of differential equations and of related physical systems.Analyzing the bifurcations or singularities of a system provides useful qualitative information about its behaviour. The authors have written this book with reffeshing clarity.Theexposition is masterful,with penetrating insights.

内页插图

目录

Preface

Chapter 1. Bifurcations of Equilibria
1. Families and Deformations
1.1. Families of Vector Fields
1.2. The Space of Jets
1.3. Sard's Lemma and Transversality Theorems
1.4. Simplest Applications: Singular Points of Generic Vector Fields
1.5. Topologically Versal Deformations
1.6. The Reduction Theorem
1.7. Generic and Principal Families
2. Bifurcations of Singular Points in Generic One-Parameter Families
2.1 Typical Germs and Principal Families
2.2. Soft and Hard Loss of Stability
3. Bifurcations of Singular Points in Generic Multi-Parameter Families with Simply Degenerate Linear Parts
3.1. Principal Families
3.2. Bifurcation Diagrams of the Principal Families (3-+) in Table 1
3.3. Bifurcation Diagrams with Respect to Weak Equivalence and Phase Portraits of the Principal Families (4-+) in Table 1
4. Bifurcations of Singular Points of Vector Fields with a Doubly-Degenerate Linear Part
4.1. A List of Degeneracies
4.2. Two Zero Eigenvalues
4.3. Reductions to Two-Dimensional Systems
4.4. One Zero and a Pair of Purely Imaginary Eigenvalues
4.5. Two Purely Imaginary Pairs
4.6. Principal Deformations of Equations of Difficult Type in Problems with Two Pairs of Purely Imaginary Eigenvalues (Following Zolitdek)
5. The Exponents of Soft and Hard Loss of Stability
5.1. Definitions
5.2. Table of Exponents

Chapter 2. Bifurcations of Limit Cycles
1. Bifurcations of Limit Cycles in Generic One-Parameter Families
1.1. Multiplier I
1.2. Multiplier-1 and Period-Doubling Bifurcations
1.3. A Pair of Complex Conjugate Multipliers
1.4. Nonlocal Bifurcations in One-Parameter Families of Diffeomorphisms
1.5. Nonlocal Bifurcations of Periodic Solutions
1.6. Bifurcations Resulting in Destructions of Invariant Tori
2. Bifurcations of Cycles in Generic Two-Parameter Families with an
Additional Simple Degeneracy
2.1. A List of Degeneracies
2.2. A Multiplier+1or-1 with Additional Degeneracy in the Nonlinear Terms
2.3. A Pair of Multipliers on the Unit Circle with Additional Degeneracy in the Nonlinear Terms
3. Bifurcations of Cycles in Generic Two-Parameter Families with Strong Resonances of Orders q≠4
3.1. The Normal Form in the Case of Unipotent Jordan Blocks
3.2. Averaging in the Seifert and the M6bius Foliations
3.3. Principal Vector Fields and their Deformations
3.4. Versality of Principal Deformations
3.5. Bifurcations of Stationary Solutions of Periodic Differential Equations with Strong Resonances of Orders q≠4
4. Bifurcations of Limit Cycles for a Pair of Multipliers Crossing the
Unit Circle at±i
4.1. Degenerate Families
4.2. Degenerate Families Found Analytically
4.3. Degenerate Families Found Numerically
4.4. Bifurcations in Nondegenerate Families
4.5. Limit Cycles of Systems with a Fourth Order Symmetry
5. Finitely-Smooth Normal Forms of Local Families
5.1. A Synopsis of Results
5.2. Definitions and Examples
5.3. General Theorems and Deformations of Nonresonant Germs
5.4. Reduction to Linear Normal Form
5.5. Deformations of Germs of Diffeomorphisms of Poincare Type
5.6. Deformations of Simply Resonant Hyperbolic Germs
5.7. Deformations of Germs of Vector Fields with One Zero Eigenvalue at a Singular Point
5.8. Functional Invariants of Diffeomorphisms of the Line
5.9. Functional Invariants of Local Families of Diffeomorphisms
5.10. Functional Invariants of Families of Vector Fields
5.11. Functional Invariants of Topological Classifications of Local Families of Diffeomorphisms of the Line
6. Feigenbaum Universality for Diffeomorphisms and Flows
6.1. Period-Doubling Cascades
6.2. Perestroikas of Fixed Points
6.3. Cascades of n-fold Increases of Period
6.4. Doubling in Hamiltonian Systems
6.5. The Period-Doubling Operator for One-Dimensional Mappings
6.6. The Universal Period-Doubling Mechanism for Diffeomorphisms

Chapter 3. Nonlocal Bifurcations
1. Degeneracies of Codimension 1. Summary of Results
1.1. Local and Nonlocal Bifurcations
1.2. Nonhyperbolic Singular Points
1.3. Nonhyperbolic Cycles
1.4. Nontransversal Intersections of Manifolds
1.5. Contours
1.6. Bifurcation Surfaces
1.7. Characteristics of Bifurcations
1.8. Summary of Results
2. Nonlocal Bifurcations of Flows on Two-Dimensional Surfaces
2.1. Semilocal Bifurcations of Flows on Surfaces
2.2. Nonlocal Bifurcations on a Sphere: The One-Parameter Case .
2.3. Generic Families of Vector Fields
2.4. Conditions for Genericity
2.5. One-Parameter Families on Surfaces different from the Sphere
2.6. Global Bifurcations of Systems with a Global Transversal Section on a Torus
2.7. Some Global Bifurcations on a Klein bottle
2.8. Bifurcations on a Two-Dimensional Sphere: The Multi-Parameter Case
2.9. Some Open Questions
3. Bifurcations of Trajectories Homoclinic to a Nonhyperbolic Singular Point
3.1. A Node in its Hyperbolic Variables
3.2. A Saddle in its Hyperbolic Variables: One Homoclinic Trajectory
3.3. The Topological Bernoulli Automorphism
3.4. A Saddle in its Hyperbolic Variables: Several Homoclinic Trajectories
3.5. Principal Families
4. Bifurcations of Trajectories Homoclinic to a Nonhyperbolic Cycle
4.1. The Structure of a Family of Homoclinic Trajectories
4.2. Critical and Noncritical Cycles
4.3. Creation of a Smooth Two-Dimensional Attractor
4.4. Creation of Complex Invariant Sets (The Noncritical Case) ...
4.5. The Critical Case
4.6. A Two-Step Transition from Stability to Turbulence
4.7. A Noncompact Set of Homoclinic Trajectories
4.8. Intermittency
4.9. Accessibility and Nonaccessibility
4.10. Stability of Families of Diffeomorphisms
4.11. Some Open Questions
5. Hyperbolic Singular Points with Homoclinic Trajectories
5.1. Preliminary Notions: Leading Directions and Saddle Numbers
5.2. Bifurcations of Homoclinic Trajectories of a Saddle that Take Place on the Boundary of the Set of Morse-Smale Systems
5.3. Requirements for Genericity
5,4, Principal Families in R3 and their Properties
5.5. Versality of the Principal Families
5.6. A Saddle with Complex Leading Direction in R3
5.7. An Addition: Bifurcations of Homoclinic Loops Outside the Boundary of a Set of Morse-Smale Systems
5.8. An Addition: Creation of a Strange Attractor upon Bifurcation of a Trajectory Homoclinic to a Saddle
6. Bifurcations Related to Nontransversal Intersections
6.1. Vector Fields with No Contours and No Homoclinic Trajectories
6.2. A Theorem on Inaccessibility
6.3. Moduli
6.4. Systems with Contours
6.5. Diffeomorphisms with Nontrivial Basic Sets
6.6, Vector Fields in R3 with Trajectories Homoclinic to a Cycle
6.7. Symbolic Dynamics
6.8. Bifurcations of Smale Horseshoes
6.9. Vector Fields on a Bifurcation Surface
6.10. Diffeomorphisms with an Infinite Set of Stable Periodic Trajectories
7. Infinite Nonwandering Sets
7.1. Vector Fields on the Two-Dimensional Torus
7.2. Bifurcations of Systems with Two Homoclinic Curves of a Saddle
7.3. Systems with Feigenbaum Attractors
7.4. Birth of Nonwandering Sets
7.5. Persistence and Smoothness of Invariant Manifolds
7.6. The Degenerate Family and Its Neighborhood in Function Space
7.7. Birth of Tori in a Three-Dimensional Phase Space
8. Attractors and their Bifurcations
8.1. The Likely Limit Set According to Milnor (1985)
8.2. Statistical Limit Sets
8.3. Internal Bifurcations and Crises of Attractors
8.4. Internal Bifurcations and Crises of Equilibria and Cycles
8.5. Bifurcations of the Two-Dimensional Torus

Chapter 4. Relaxation Oscillations
1. Fundamental Concepts
1.1. An Example: van der Pors Equation
1.2. Fast and Slow Motions
1.3. The Slow Surface and Slow Equations
1.4. The Slow Motion as an Approximation to the Perturbed Motion
1.5. The Phenomenon of Jumping
2. Singularitie 国外数学名著系列50(续一 影印版) 动力系统5:分歧理论和突变理论 [Dynamical Systems V: Bifurcation Theory and Catastrophe Theory] 下载 mobi epub pdf txt 电子书 格式

国外数学名著系列50(续一 影印版) 动力系统5:分歧理论和突变理论 [Dynamical Systems V: Bifurcation Theory and Catastrophe Theory] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

国外数学名著系列50(续一 影印版) 动力系统5:分歧理论和突变理论 [Dynamical Systems V: Bifurcation Theory and Catastrophe Theory] 下载 mobi pdf epub txt 电子书 格式 2024

国外数学名著系列50(续一 影印版) 动力系统5:分歧理论和突变理论 [Dynamical Systems V: Bifurcation Theory and Catastrophe Theory] 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

国外数学名著系列50(续一 影印版) 动力系统5:分歧理论和突变理论 [Dynamical Systems V: Bifurcation Theory and Catastrophe Theory] mobi epub pdf txt 电子书 格式下载 2024


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.cndgn.com All Rights Reserved. 新城书站 版权所有