深度学习导论及案例分析

深度学习导论及案例分析 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
李玉鑑,张婷 等 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-27

图书介绍


出版社: 机械工业出版社
ISBN:9787111550754
版次:1
商品编码:11993409
品牌:机工出版
包装:平装
开本:16开
出版时间:2016-10-01
用纸:胶版纸
页数:292


类似图书 点击查看全场最低价

相关图书





图书描述

编辑推荐

关于深度学习的导论性著作,也是了解深度学习的入门之书。
详述了深度学习的9大重要模型及其学习算法、变种模型和混杂模型,内容翔实,具有提纲挈领的指导意义。
基于Matlab、Python和C++相关的程序案例介绍深度学习模型,有助于读者全面了解深度学习模型和算法的实现途径


这是一部关于深度学习的导论性著作,也是了解深度学习的入门书籍。全书涵盖了深度学习的发展历史、特点优势,包括各种重要的模型、算法及应用,对读者把握深度学习的基本脉络和未来趋势,具有提纲挈领的指导意义。
深度学习是近年来在神经网络发展史上掀起的一波新浪潮,是机器学习的一大热点方向,是实现人工智能的一种强大技术,有关成果早已震撼了学术界和工业界。随着AlphaGo战胜人类的围棋冠军,深度学习又受到了空前绝*的爆炸性关注。
有兴趣的读者可以从本书开始,逐步揭开深度学习的神秘面纱,窥探其中的奥妙所在。
本书具有如下特色
内容布局注重深入浅出、引用文献丰富,方便读者学习和钻研。
试图纠正许多读者对深度学习的一些错误理解,比如认为多层感知器不是深度学习模型,认为自编码器能够直接用来进行手写字符识别,认为受限玻耳兹曼机也是严格意义上的深度学习模型,等等。
提供了许多深度学习的基本案例,涉及Matlab、Python和C++常用语言,以及Theano和Caffe等开源库,有助于读者通过不同语言的分析案例,全面了解深度学习模型和算法的实现途径。

内容简介

深度学习是近年来在神经网络发展史上掀起的一波新浪潮,是机器学习的一大热点方向,因在手写字符识别、维数约简、图像理解和语音处理等方面取得巨大进展,所以很快受到了学术界和工业界的高度关注。在本质上,深度学习就是对具有深层结构的网络进行有效学习的各种方法。
本书不仅介绍了深度学习的起源和发展、强调了深层网络的特点和优势,说明了判别模型和生成模型的相关概念,还详述了深度学习的9种重要模型及其学习算法、变种模型和混杂模型,包括受限玻耳兹曼机、自编码器、深层信念网络、深层玻耳兹曼机、和积网络、卷积神经网络、深层堆叠网络、循环神经网络和长短时记忆网络,以及它们在图像处理、语音处理和自然语言处理等领域的广泛应用。同时分析了一系列深度学习的基本案例。
本书每个案例包括模块简介、运行过程、代码分析和使用技巧4个部分,层次结构清晰,利于读者的选择和学习并在应用中拓展思路。涉及的编程语言有3种:Matlab、Python和C++。其中,很多深度学习程序是用Matlab编写的,可以直接运行;如果使用Python语言编写深度学习程序,则可以调用Theano开源库;若使用C++语言,则可以调用Caffe开源库。

作者简介

李玉鑑( 鉴 ) 北京工业大学教授,博士生导师。华中科技大学本科毕业,中国科学院数学研究所硕士毕业,中国科学院半导体研究所博士毕业,北京邮电大学博士后出站。曾在中国科学院生物物理所工作,对意识的本质问题关注过多年,并在《21世纪100个交叉科学难题》上发表《揭开意识的奥秘》一文,提出了解决意识问题的认知相对论纲领,对脑计划和类脑研究具有宏观指导意义。长期围绕人工智能的核心目标,在神经网络、自然语言处理、模式识别和机器学习等领域开展教学、科研工作,发表国内外期刊、会议论文数十篇,是本书的*一作者。

目录

前言
第一部分 基础理论
目 录
第1章概述 2
1.1深度学习的起源和发展 2
1.2深层网络的特点和优势 4
1.3深度学习的模型和算法 7
第2章预备知识 9
2.1矩阵运算 9
2.2概率论的基本概念 11
2.2.1概率的定义和性质 l1
2.2.2 随机变量和概率密度
函数 l2
2.2.3期望和方差. 13
2.3信息论的基本概念. 14
2.4概率图模型的基本概念 15
2.5概率有向图模型 16
2.6概率无向图模型 20
2.7部分有向无圈图模型 22
2.8条件随机场 24
2.9马尔可夫链 26
2.10概率图模型的学习 28
2.11概率图模型的推理 29
2.12马尔可夫链蒙特卡罗方法 31
2.13玻耳兹曼机的学习 32
2.14通用反向传播算法 35
2.15通用逼近定理 37
第3章受限玻耳兹曼机 38
3.1 受限玻耳兹曼机的标准
模型 38
3.2受限玻耳兹曼机的学习算法 40
3.3 受限玻耳兹曼机的变种模型 44
第4章 自编码器 48
4.1 自编码器的标准模型 48
4.2 自编码器的学习算法 50
4.3 自编码器的变种模型 53
第5章深层信念网络 57
5.1 深层信念网络的标准模型 57
5.2深层信念网络的生成学习
算法 60
5.3深层信念网络的判别学习算法 62
5.4深层信念网络的变种模型 63
第6章深层玻耳兹曼机 64
6.1 深层玻耳兹曼机的标准模型 64
6.2深层玻耳兹曼机的生成学习
算法 65
6.3 深层玻耳兹曼机的判别学习
算法 69
6.4深层玻耳兹曼机的变种模型 69
第7章和积网络 72
7.1 和积网络的标准模型 72
7.2和积网络的学习算法 74
7.3和积网络的变种模型 77
第8章卷积神经网络 78
8.1卷积神经网络的标准模型 78
8.2卷积神经网络的学习算法 81
8.3卷积神经网络的变种模型 83
第9章深层堆叠网络 一86
9.1 深层堆叠网络的标准模型 86
9.2深层堆叠网络的学习算法 87
9.3深层堆叠网络的变种模型 88
第1 0章循环神经网络 89
10.1循环神经网络的标准模型 89
10.2循环神经网络的学习算法 91
10.3循环神经网络的变种模型 92
第1 1章长短时记忆网络 94
11.1长短时记忆网络的标准模型 94
11.2长短时记忆网络的学习算法 96
11.3长短时记忆网络的变种模型 98
第12章深度学习的混合模型、
广泛应用和开发工具 102
12.1深度学习的}昆合模型 102
12.2深度学习的广泛应用 104
12.2.1 图像和视频处理 104
12.2.2语音和音频处理 106
12.2.3 自然语言处理 108
12.2.4其他应用 109
12.3深度学习的开发工具 110
第1 3章深度学习的总结、
批评和展望 114
第二部分案例分析
第14章实验背景 一118
14.1运行环境 118
14.2实验数据 118
14.3代码工具 120
第1 5章 自编码器降维案例 一121
15.1 自编码器降维程序的模块
简介 121
15.2 自编码器降维程序的运行
过程 122
15.3 自编码器降维程序的代码
分析 127
15.3.1 关键模块或函数的主要
功能 127
15.3.2主要代码分析及注释 128
15.4 自编码器降维程序的使用
技巧 138
第1 6章深层感知器识别案例 139
16.1 深层感知器识别程序的模块
简介 139
16.2深层感知器识别程序的运行
过程 140
16.3深层感知器识别程序的代码
分析 143
16.3.1 关键模块或函数的主要
功能 143
16.3.2主要代码分析及注释 l43
16.4深层感知器识别程序的使用
技巧 148
第1 7章深层信念网络生成
案例 149
17.1 深层信念网络生成程序的模块
简介 149
17.2深层信念网络生成程序的运行
过程 150
17.3深层信念网络生成程序的代码
分析 153
第18章深层信念网络分类案例163
第19章深层玻耳兹曼机识别案例202
第20章卷积神经网络识别案例221
第21章循环神经网络填充案例236
第22章长短时忆网络分类案例245
附录263
参考文献269

前言/序言

  “深度学习”一词大家已经不陌生了,随着在不同领域取得了超越其他方法的成功,深度学习在学术界和工业界掀起了一次神经网络发展史上的新浪潮。运用深度学习解决实际问题,不仅是学术界高素质人才所需的技能,而且是工业界商业巨头进行竞争的核心武器。为适应这一发展的需要,作者以长期的相关研究和教学工作为基础,经过2~3年的调研和努力,终于编写完本书。这是一本关于深度学习的入门教材和导论性参考书,受众对象包括计算机、自动化、信号处理、机电工程、应用数学等相关专业的研究生、教师和科研工作者,本书有助于他们在具备神经网络的基础知识后进一步了解深度学习的理论和方法。
  自2006年诞生以来,深度学习很快成长壮大,并有一些相关的英文书籍陆续出版。虽然国内也开始出现译著,但对深度学习的内容概括得并不全面,远不能够满足市场需求。本书的内容几乎涵盖了深度学习的所有重要方面,结构上分为基础理论和案例分析两个部分。在基础理论部分,本书不仅介绍了深度学习的起源和发展、特点和优势,而且描述了深度学习的9种重要模型,包括受限玻耳兹曼机、自编码器、深层信念网络、深层玻耳兹曼机、和积网络、卷积神经网络、深层堆叠网络、循环神经网络和长短时记忆网络。此外,还讨论了这些模型的学习算法、变种模型和混合模型,以及它们在图像视频处理、音频处理和自然语言处理等领域中的广泛应用,并总结了有关的开发工具、问题和挑战。在案例分析部分,本书主要挑选了一些深度学习的程序案例进行细致的说明和分析,指导读者学习有关的程序代码和开发工具,以便在解决实际问题时加以灵活利用。其中,每个程序案例都包括模块简介、运行过程、代码分析和使用技巧这4个部分,层次结构清晰,以利于读者选择和学习,并在应用中拓展思路。本书的一个不足之处是:案例分析部分没有涉及“和积网络”和“深层堆叠网络”,这是因为和积网络的运行需要大规模集群的硬件条件,另外也很难找到便于构造深层堆叠网络案例的程序代码。
  本书的一大特色是从初学者的角度出发,在知识结构的布局上注重深入浅出,对深度学习?的模型涵盖得较全面,文献引用非常丰富,既适合读者入门学习,又有助于他们深入钻研。同时,本书也试图纠正许多读者对深度学习的_些错误理解,比如认为多层感知器不是深度学习模型,认为白编码器能够直接用来识别手写字符,认为受限玻耳兹曼机也是严格意义上的深度学习模型,等等。
  本书的另,个特色是通过程序案例介绍深度学习模型。这对缺乏相关背景知识的读者可能非常有帮助,使他们在知其然不知其所以然的情况F运行深度学习程序并获得计算结果,从而在积累实践经验和感性认识的过程中逐步了解深度学习的有关内容。本书的案例涉及三种常见的编程iIi.寿:Matlab.Pytl,o。,和(:++。其中,很多深度学习程序是用Matlah编写的,可以直接运行。,如果使用Pvlh.,n语言‘编写深度学习程序,则可以调用Theano开源库;若使用c++语言,则r】“以1川Caffe斤源库。不同的语言分析案例有助于读者全面了解深度学习模型和算法的实现途径,并根据自己的熟练程度灵活选择。
  本扣是集体智慧的结晶。北京工业大学计算机学院的刘波、胡海鹤和刘兆英等老师,以及张、ni红、曾少锋、沈成恺、杨红丽和丁勇等同学,在文献和软件资料的收集整理方面提供了很大帮助:,此外,华章公司的温莉芳副总经理对本书的i…版给予了大力支持,张梦玲编辑对本书内容的编排提出了许多宝贵意见。在这里向他们表示衷心的感谢c,最后,还要感谢父母、爱人和儿女在本书写作期间给予的理解,感谢他们的真情鼓励、默默付im以及埘非规律生活的宽容。同时,作者在此也因减少了对他们的关爱而深表愧疚和歉意。
  限于作者水平,本书在内容取材和结构编排r町能存在不妥之处,希望使用本书的教师、学生、孥家以及其他读者提出宝贵的批评和建议。,作者2016年8月于北京工业大学

深度学习导论及案例分析 下载 mobi epub pdf txt 电子书 格式

深度学习导论及案例分析 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

深度学习导论及案例分析 下载 mobi pdf epub txt 电子书 格式 2024

深度学习导论及案例分析 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

每年的京东读书节都会囤点书,快递很赞,书还没看先不说

评分

比较新的机器学习方面的书籍,算是由浅入深吧!适合刚刚开始接触TensorFlow的人。

评分

吾消费京东商城数年,深知各产品琳琅满目。然,唯此宝物与众皆不同,为出淤泥之清莲。使吾为之动容,心驰神往,以至茶饭不思,寝食难安,辗转反侧无法忘怀。于是乎紧衣缩食,凑齐银两,倾吾之所有而能买。东哥之热心、快递员之殷切,无不让人感激涕零,可谓迅雷不及掩耳盗铃儿响叮当仁不让世界充满爱。待打开包裹之时,顿时金光四射,屋内升起七彩祥云,处处皆是祥和之气。吾惊讶之余甚是欣喜若狂,呜呼哀哉!此宝乃是天上物,人间又得几回求!遂沐浴更衣,焚香祷告后与人共赏此宝。人皆赞叹不已,故生此宝物款型及做工,超高性价比之慨,且赞吾独具慧眼与时尚品位。产品介绍果然句句实言,毫无夸大欺瞒之嫌。实乃大家之风范,忠义之商贾。

评分

送货速度非常快!很好的一本书!

评分

整体来说非常不错的一本书。能够查漏补缺很多知识。我买来用作工具书。

评分

书的封面感觉很精美,很有文学气息。京东的618活动挺给力的,买到了挺多自己喜欢的书,价格也很优惠,这点很赞。物流也还可以,两三天就到了。书保存的也很好。没有什么严重的磕损或擦伤。很开心买到了这么多书,下次再买,或许就是双十一了吧。希望京东以后能推出更加优惠的活动,总体好评吧!

评分

非常感谢京东商城给予的优质的服务,从仓储管

评分

书收到了,和其他计算机类书不一样的地方是使用了很多人物插画,书还没看,拿它做深度学习的入门会不错

评分

好书,有代码,适合程序员,2017年出版,最

类似图书 点击查看全场最低价

深度学习导论及案例分析 mobi epub pdf txt 电子书 格式下载 2024


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.cndgn.com All Rights Reserved. 新城书站 版权所有