編輯推薦
適讀人群 : 高等院校理工、財經、醫藥、農林等專業大學本科生、研究生,從事概率論與數理統計雙語或英語教學的教師,特彆是準備齣國留學的大學生及高中畢業生 本書可以作為大學數學概率論與數理統計雙語或英語教學教師和準備齣國留學深造學子的參考書。特彆適閤中外閤作辦學的國際教育班的學生,能幫助他們較快地適應全英文的學習內容和教學環境,完成與國外大學學習的銜接。本書在定稿之前已在多個學校作為校本教材試用,而且得到瞭師生的好評。
內容簡介
本書采用學生易於接受的知識結構方式和英語錶述方式,科學、係統地介紹瞭概率論與數理統計中隨機事件與概率、古典概率的計算、一維隨機變量及概率分布、二維隨機變量及其分布、隨機變量的數字特徵、大數定律和中心極限定理、樣本及抽樣分布、參數估計等知識。強調通用性和適用性,兼顧先進性。本書起點低,難度坡度適中,語言簡潔明瞭,不僅適用於課堂教學使用,同時也適用於自學自習。全書有關鍵詞索引,習題按小節配置,題量適中,題型全麵,書後附有答案。
本書讀者對象為高等院校理工、財經、醫藥、農林等專業大學生和教師,特彆適閤作為中外閤作辦學的國際教育班的學生以及準備齣國留學深造學子的參考書。
作者簡介
毛綱源,武漢理工大學資深教授,畢業於武漢大學,留校任教,後調入武漢工業大學(現閤並為武漢理工大學)擔任數學物理係係主任,在高校從事數學教學與科研工作40餘年,除瞭齣版多部專著(早在1998年,世界科技齣版公司World Scientific Publishing Company就齣版過他主編的綫性代數Linear Algebra的英文教材)和發錶數十篇專業論文外,還發錶10餘篇考研數學論文。
主講微積分、綫性代數、概率論與數理統計等課程。理論功底深厚,教學經驗豐富,思維獨特。曾多次受邀在各地主講考研數學,得到學員的廣泛認可和一緻好評:“知識淵博,講解深入淺齣,易於接受”“解題方法靈活,技巧獨特,輔導針對性極強”“對考研數學的齣題形式、考試重點難點瞭如指掌,上他的輔導班受益匪淺”。
徐麗莉,北京師範大學珠海分校副教授,畢業於北京師範大學,美國德剋薩斯理工大學統計學碩士。主講概率論與數理統計、統計預測決策、企業統計學、綫性代數等課程。在國內外權wei期刊發錶中英文論文10餘篇。
精彩書評
本書是概率論與數理統計教材,采用全英文編寫,是作者幾十年來在教學一綫工作經驗的總結,在編寫過程中參考瞭國外優秀的英語概率論與數理統計教材,探討瞭適應中國學生學習的一些內容和模式,符閤當前大學數學概率論與數理統計課程英語教學的特點,很具有實用性和針對性。
目錄
Chapter 1 Introduction to Probability(1)
1.1 Sets and Set Operations(1)
1.2 Random Experiments(5)
1.3 Sample Space(6)
1.4 Events (Random Events)(8)
1.4.1 The concept of events (random events)(8)
1.4.2 Relations among events(10)
1.4.3 Operations of events(10)
1.5 Relative Frequency(14)
Exercise 1(15)
Chapter 2 Finite Sample Spaces(17)
2.1 Classical Probability Model(17)
2.1.1 Finite sample spaces(17)
2.1.2 Equally likely outcomes(19)
2.1.3 Classical probability model or equally likely probability model(20)
2.1.4 Counting methods(21)
2.2 Basic Properties of Probability(30)
Exercise 2(35)
Chapter 3 Conditional Probability and Independence(37)
3.1 Conditional Probability(37)
3.2 Product Rule (Multiplication Rule)(39)
3.3 Total Probability Law(41)
3.4 Bayes’Theorem(44)
3.5 Independent Events(46)
3.5.1 Independence of two events(46)
3.5.2 Independence of several events(49)
Exercise 3(51)
Chapter 4 Random Variables and Distributions(54)
4.1 Definition of Random Variable(54)
4.2 Discrete Random Variable(56)
4.2.1 Probability distribution of discrete random variables(56)
4.2.2 Some commonly used discrete probability distributions(59)
4.3 Cumulative Distribution Function(66)
4.3.1 Finding the cumulative distribution function of discrete variable(66)
4.3.2 Determining probability by the distribution function(68)
4.3.3 Finding the probability function of a random variable with cumulative distribution function(70)
4.4 Continuous Random Variable(70)
4.4.1 Continuous random variable and probability density function(70)
4.4.2 Some continuous probability distributions(73)
4.5 Finding the Distribution of Random Variable Function(81)
4.5.1 Finding the probability distribution of discrete random variable function(81)
4.5.2 Finding the p.d.f. of the function Y=g(X),where y=g(x) is continuous monotonic function(82)
4.5.3 Finding the p.d.f. of the function Y=g(X) where X is a continuous random variable(86)
4.5.4 Finding the distribution of the function Y=g(X) where X is a continuous random variable(87)
Exercise 4(88)
Chapter 5 Two-dimensional Random Variable(91)
5.1 Concept of Joint Probability Distribution(91)
5.1.1 Joint probability distribution for two discrete random variables(91)
5.1.2 Marginal distribution of discrete random variable(93)
5.1.3 Joint probability distribution function for two continuous random variables(98)
5.1.4 Marginal probability density function and conditional probability density(100)
5.1.5 The joint p.d.f. for two random variables(101)
5.2 Conditional Distribution(104)
5.3 Two Commonly Useful Distributions(108)
5.3.1 Two-dimensional uniform distribution(108)
5.3.2 Bivariate normal distribution(109)
5.4 Independence of Two Random Variables(110)
Exercise 5(115)
Chapter 6 Numerical Characteristics of Random Variables(118)
6.1 Expectation of Random Variable(118)
6.1.1 Expectation of discrete distribution(118)
6.1.2 Expectation of continuous random variable(119)
6.1.3 The expectation of function(120)
6.1.4 Properties of expectation(123)
6.2Variance of Random Variable(124)
6.2.1 Definition of the variance and the standard deviation(124)
6.2.2 Properties of the variance of random variable(127)
6.2.3 The expectation and variance of special probability distribution(129)
6.3 Covariance and Correlation(132)
6.3.1 Covariance(132)
6.3.2 Correlation coefficient(134)
6.4 Moments and Covariance Matrix(137)
Exercise 6(138)
Chapter 7 Law of Large Number and Central Limit Theorem(140)
7.1 Chebyshev’s Inequality(140)
7.2 Law of Large Number(142)
7.3 Central Limit Theorem(144)
Exercise 7(147)
Chapter 8 Basic Concept in Mathematical Statistics Introduction(148)
8.1 Random Sampling(148)
8.1.1 Population and sample(148)
8.1.2 Random sample(149)
8.1.3 Distribution of random sample(150)
8.2 Statistics(154)
8.3 Sampling Distribution(157)
8.3.1 The chi-square distribution(157)
8.3.2 The t-distribution(160)
8.3.3 The F-distribution(162)
8.4 Sampling Distribution Related to Sample Mean or (and) Sample Variance from Normal Population(165)
8.4.1 Sampling distribution related to sample mean or (and) sample variance from one normal population(165)
8.4.2 Sampling distribution related to sample mean of (and) sample variance from two normal populations(166)
Exercise 8(168)
Chapter 9 Parameter Estimation(171)
9.1 Point Estimation(171)
9.2 The Particular Properties of Estimators(172)
9.2.1 Unbiasedness(172)
9.2.2 Validity(173)
9.2.3 Consistency(175)
9.3 Moment Estimation and Maximum Likelihood Estimation(176)
9.3.1 Moment estimation(176)
9.3.2 Maximum likelihood estimation(177)
9.4 Interval Estimation of Mean and Variance for Normal Population(182)
9.4.1 The case for a single normal population(182)
9.4.2 The case for two populations N(μ1,σ21),N(μ2,σ22)(188)
Exercise 9(191)
Chapter 10 Hypothesis Testing(195)
10.1 General Concepts Used in Hypothesis Testing(195)
10.1.1 Statistical hypothesis(195)
10.1.2 Two types of errors(197)
10.1.3 Testing a statistical hypothesis(198)
10.2 Hypothesis Test for a Single Normal Population Parameter(201)
10.2.1 Hypothesis test for mean μ of a single normal population(201)
10.2.2 Hypothesis test for variance(205)
10.3 Hypothesis Test of Two Normal Population Parameters(208)
10.3.1 Hypothesis test for a difference between two normal populations(208)
10.3.2 Hypothesis test for two normal population variances(212)
10.4 The Relationship between Hypothesis Testing and Confidence Interval(215)
Exercise 10(216)
Answers to Exercises(219)
Appendix A Some Important Distributions(230)
Appendix B Statistical Tables(231)
Table B-1 Poisson Distribution(231)
Table B-2 Standard Normal Distribution(233)
Table B-3 t-Distribution(235)
Table B-4 χ2-Distribution(237)
Table B-5 F-Distribution(240)
前言/序言
Probability and statistics is a basic course of statistical regularity of random phenomena,which focuses on the interpretations,methods and theories in probability and statistics as well as presenting the specific application in all fields according to their characteristics.
Ideas and concepts are shown in this textbook with plenty of examples in order to make the course structure easier to understand.
You are supposed to comprehend and understand the basic concepts of probability and mathematical statistics somehow by reading this book,knowing how to deal with random experiments as well.It also trains readers to use the methods to analyze and solve actual problems,and lays a solid basis of statistics for the future study of other related advanced courses.
概率論與數理統計=Probability-and-Statistics:英文 下載 mobi epub pdf txt 電子書 格式
概率論與數理統計=Probability-and-Statistics:英文 下載 mobi pdf epub txt 電子書 格式 2024