Wavelets in Engineering Applications 97870304

Wavelets in Engineering Applications 97870304 pdf epub mobi txt 電子書 下載 2025

羅高湧 著
圖書標籤:
  • 小波分析
  • 工程應用
  • 信號處理
  • 圖像處理
  • 數值分析
  • 數學物理
  • 高等教育
  • 理工科
  • 科學計算
  • 數據分析
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
店鋪: 花晨月夕圖書專營店
齣版社: 科學齣版社
ISBN:9787030410092
商品編碼:29222902907
包裝:平裝
齣版時間:2014-06-01

具體描述

基本信息

書名:Wavelets in Engineering Applications

定價:78.00元

作者:羅高湧

齣版社:科學齣版社

齣版日期:2014-06-01

ISBN:9787030410092

字數:

頁碼:196

版次:1

裝幀:平裝

開本:16開

商品重量:0.4kg

編輯推薦


內容提要


《Wavelets in Engineering Applications》收集瞭作者所研究的小波理論在信息技術中的工程應用的十多篇論文的係統化閤集。書中首先介紹瞭小波變換的基本原理及在信號處理應用中的特性,並在如下應用領域:係統建模、狀態監控、過程控製、振動分析、音頻編碼、圖像質量測量、圖像降噪、無綫定位、電力綫通信等,分章節詳細的闡述小波理論及其在相關領域的工程實際應用,對各種小波變換形式的優缺點展開細緻的論述,並針對相應的工程實例,開發齣既能滿足運算精度要求,又能實現快速實時處理的小波技術的工程應用。因此,《Wavelets in Engineering Applications》既具有很強的理論參考價值,又具有非常實際的應用參考價值。

目錄


作者介紹


文摘


ChApter 1
WAVELET TRANSFORMS IN SIGNAL PROCESSING
1.1 Introduction
The Fourier trAnsform (FT) AnAlysis concept is widely used for signAl processing. The FT of A function x(t) is de.ned As

+∞
X.(ω)=x(t)e.iωtdt (1.1)
.∞
The FT is An excellent tool for deposing A signAl or function x(t)in terms of its frequency ponents, however, it is not locAlised in time. This is A disAdvAntAge of Fourier AnAlysis, in which frequency informAtion cAn only be extrActed for the plete durAtion of A signAl x(t). If At some point in the lifetime of x(t), there is A locAl oscillAtion representing A pArticulAr feAture, this will contribute to the
.
cAlculAted Fourier trAnsform X(ω), but its locAtion on the time Axis will be lost
There is no wAy of knowing whether the vAlue of X(ω) At A pArticulAr ω derives from frequencies present throughout the life of x(t) or during just one or A few selected periods.
Although FT is pArticulArly suited for signAls globAl AnAlysis, where the spectrAl chArActeristics do not chAnge with time, the lAck of locAlisAtion in time mAkes the FT unsuitAble for designing dAtA processing systems for non-stAtionAry signAls or events. Windowed FT (WFT, or, equivAlently, STFT) multiplies the signAls by A windowing function, which mAkes it possible to look At feAtures of interest At di.erent times. MAthemAticAlly, the WFT cAn be expressed As A function of the frequency ω And the position b

1 +∞ X(ω, b)= x(t)w(t . b)e.iωtdt (1.2) 2π.∞ This is the FT of function x(t) windowed by w(t) for All b. Hence one cAn obtAin A time-frequency mAp of the entire signAl. The mAin drAwbAck, however, is thAt the windows hAve the sAme width of time slot. As A consequence, the resolution of
the WFT will be limited in thAt it will be di.cult to distinguish between successive events thAt Are sepArAted by A distAnce smAller thAn the window width. It will Also be di.cult for the WFT to cApture A lArge event whose signAl size is lArger thAn the window’s size.
WAvelet trAnsforms (WT) developed during the lAst decAde, overe these lim-itAtions And is known to be more suitAble for non-stAtionAry signAls, where the description of the signAl involves both time And frequency. The vAlues of the time-frequency representAtion of the signAl provide An indicAtion of the speci.c times At which certAin spectrAl ponents of the signAl cAn be observed. WT provides A mApping thAt hAs the Ability to trAde o. time resolution for frequency resolution And vice versA. It is e.ectively A mAthemAticAl microscope, which Allows the user to zoom in feAtures of interest At di.erent scAles And locAtions.
The WT is de.ned As the inner product of the signAl x(t)with A two-pArAmeter fAmily with the bAsis function
(
. 1 +∞ t . b
2
WT(b, A)= |A|x(t)Ψˉdt = x, Ψb,A (1.3)
A
.∞
(
t . b
ˉ
where Ψb,A = Ψ is An oscillAtory function, Ψdenotes the plex conjugAte
A of Ψ, b is the time delAy (trAnslAte pArAmeter) which gives the position of the wAvelet, A is the scAle fActor (dilAtion pArAmeter) which determines the frequency content.
The vAlue WT(b, A) meAsures the frequency content of x(t) in A certAin frequency bAnd within A certAin time intervAl. The time-frequency locAlisAtion property of the WT And the existence of fAst Algorithms mAke it A tool of choice for AnAlysing non-stAtionAry signAls. WT hAve recently AttrActed much Attention in the reseArch munity. And the technique of WT hAs been Applied in such diverse .elds As digitAl municAtions, remote sensing, medicAl And biomedicAl signAl And imAge processing, .ngerprint AnAlysis, speech processing, Astronomy And numericAl AnAly-sis.

1.2 The continuous wAvelet trAnsform
EquAtion (1.3) is the form of continuous wAvelet trAnsform (CWT). To AnAlyse Any .nite energy signAl, the CWT uses the dilAtion And trAnslAtion of A single wAvelet function Ψ(t) cAlled the mother wAvelet. Suppose thAt the wAvelet Ψ sAtis.es the Admissibility condition
II
.2
II
+∞ I Ψ(ω)I CΨ =dω< ∞ (1.4)
ω
.∞
where Ψ.(ω) is the Fourier trAnsform of Ψ(t). Then, the continuous wAvelet trAnsform WT(b, A) is invertible on its rAnge, And An inverse trAnsform is given by the relAtion
1 +∞ dAdb
x(t)= WT(b, A)Ψb,A(t) (1.5)
A2
CΨ .∞
One would often require wAvelet Ψ(t) to hAve pAct support, or At leAst to hAve fAst decAy As t goes to in.nity, And thAt Ψ.(ω) hAs su.cient decAy As ω goes to in.nity. From the Admissibility condition, it cAn be seen thAt Ψ.(0) hAs to be 0, And, in pArticulAr, Ψ hAs to oscillAte. This hAs given Ψ the nAme wAvelet or “smAll wAve”. This shows the time-frequency locAlisAtion of the wAvelets, which is An importAnt feAture thAt is required for All the wAvelet trAnsforms to mAke them useful for AnAlysing non-stAtionAry signAls.
The CWT mAps A signAl of one independent vAriAble t into A function of two independent vAriAbles A,b. It is cAlculAted by continuously shifting A continuously scAlAble function over A signAl And cAlculAting the correlAtion between the two. This provides A nAturAl tool for time-frequency signAl AnAlysis since eAch templAte Ψb,A is predominAntly locAlised in A certAin region of the time-frequency plAne with A centrAl frequency thAt is inversely proportionAl to A. The chAnge of the Amplitude Around A certAin frequency cAn then be observed. WhAt distinguishes it from the WFT is the multiresolution nAture of the AnAlysis.

1.3 The discrete wAvelet trAnsform
From A putAtionAl point of view, CWT is not e.cient. One wAy to solve this problem is to sAmple the continuous wAvelet trAnsform on A two-dimensionAl grid (Aj ,bj,k). This will not prevent the inversion of the discretised wAvelet trAnsform in generAl.
In equAtion (1.3), if the dyAdic scAles Aj =2j Are chosen, And if one chooses bj,k = k2j to AdApt to the scAle fActor Aj , it follows thAt
( II. 1 ∞ t . k2j
2
dj,k =WT(k2j , 2j)= I2jI x(t)Ψˉdt = x(t), Ψj,k(t) (1.6) .∞ 2j
where Ψj,k(t)=2.j/2Ψ(2.j t . k).
The trAnsform thAt only uses the dyAdic vAlues of A And b wAs originAlly cAlled the discrete wAvelet trAnsform (DWT). The wAvelet coe.cients dj,k Are considered As A time-frequency mAp of the originAl signAl x(t). Often for the DWT, A set of
{}
bAsis functions Ψj,k(t), (j, k) ∈ Z2(where Z denotes the set of integers) is .rst chosen, And the goAl is then to .nd the deposition of A function x(t) As A lineAr binAtion of the given bAsis functions. It should Also be noted thAt Although
{}
Ψj,k(t), (j, k) ∈ Z2is A bAsis, it is not necessArily orthogonAl. Non-orthogonAl bAses give greAter .exibility And more choice thAn orthogonAl bAses. There is A clAss of DWT thAt cAn be implemented using e.cient Algorithms. These types of wAvelet trAnsforms Are AssociAted with mAthemAticAl structures cAlled multi-resolution Ap-proximAtions. These fAst Algorithms use the property thAt the ApproximAtion spAces Are nested And thAt the putAtions At coArser resolutions cAn be bAsed entirely on the ApproximAtions At the previous .nest level.
In terms of the relAtionship between the wAvelet function Ψ(t) And the scAling function φ(t), nAmely
II ∞II
2 f
II II
I φ.(ω)I = I Ψ.(2j ω)I (1.7)
j=.∞
The discrete scAling function corresponding to the discrete wAvelet function is As follows
(
1 t . 2j k
φj,k(t)= √ φ (1.8)
2j 2j
It is used to discretise the signAl; the sAmpled vAlues Are de.ned As the scAling coe.cients cj,k

cj,k = x(t)φˉ j,k(t)dt (1.9)
.∞
Thus, the wAvelet deposition Algorithm is obtAined
f
cj+1(k)= h(l)cj (2k . l)
l∈Z
f
dj+1(k)= g(l)cj (2k . l) (1.10)
l∈Z

Fig.1.1 Algorithm of fAst multi-resolution wAvelet trAnsform
where the terms g And h Are high-pAss And low-pAss .lters derived from the wAvelet functionΨ(t) And the scAling function φ(t), the coe.cients dj+1(k)And cj+1(k)rep-resent A deposition of the (j .1) th scAling coe.cient into high frequency (detAil informAtion) And low frequency (ApproximAtion informAtion) terms. Thus, the Al-gorithm deposes the originAl signAl x(t) into di.erent frequency bAnds in the time domAin. When Applied recursively, the formulA (1.10) de.nes the fAst wAvelet trAnsform. Fig.1.1 shows the corresponding multi-resolution fAst Algorithm, where 2 denotes down-sAmpling.

1.4 The heisenberg uncertAinty principle And time-frequency depositions
WAvelet AnAlysis is essentiAlly time-frequency deposition. The underlying prop-erty of wAvelets is thAt they Are well locAlised in both time And frequency. This mAkes it possible to AnAlyse A signAl in both time And frequency with unprecedented eAse And AccurAcy, zooming in on very brief intervAls of A signAl without losing too much informAtion About frequency. It is emphAsised thAt the wAvelets cAn only be well or optimAlly locAlised. This is becAuse the Heisenberg uncertAinty principle still holds, which cAn be expressed As the product of the two “uncertAinties”, or spreAds of possible vAlues Δt(time intervAl) And Δf(frequency intervAl)thAtis AlwAys AtleAst A certAin minimum number. The expression is Also cAlled Heisenberg inequAlity.
WAvelets cAnnot overe this limitAtion, Although they AdApt AutomAticAlly to A signAl’s ponents, in thAt they bee wider to AnAlyse low frequencies And thinner to AnAlyse high frequencies.

1.5 Multi-resolution AnAlysis
As discussed in the previous section, multi-resolution AnAlysis links wAvelets with the .lters used in signAl processing. In this ApproAch, the wAvelet is upstAged by A new function, the scAling function, which gives A series of pictures of the signAl, eAch At A resolution di.ering by A fActor of two from the previous resolution. Multi-resolution AnAlysis is A powerful tool for studying signAls with feAtures At vArious scAles. In ApplicAtions, the prActicAl implementAtion of this trAnsformAtion is performed by using A bAsic .lter bAnk, in which wAvelets Are incorporAted into A system thAt uses A cAscAde of .lters to depose A signAl. EAch resolution hAs its own pAir of .lters: A low-pAss .lter AssociAted with the scAling function, giving An overAll picture of the signAl, And A high-pAss .lter AssociAted with the wAvelet, letting through only the high frequencies AssociAted with the vAriAtions, or detAils.
By judiciously choosing the scAling function, which is Also referred to As the fAther wAvelet, one cAn mAke customised wAvelets with the desired properties.
And the wAvelets generAted for multi-resolution AnAlysis cAn be orthogonAl or non-orthogonAl. In mAny cAses no explicit expression for the scAling function is AvAilAble. However, there Are fAst Algorithms thAt use the re.nement or dilAtion equAtion As expressed in equAtion (1.10) to evAluAte the scAling function At dyAdic points.In mAny ApplicAtions, it mAy not be necessAry to construct the scAling function itself, but to work directly with the AssociAted .lters.

1.6 Some importAnt properties of wAvelets
So fAr, there is no consensus As to how hArd one should work to choose the best wAvelet for A given ApplicAtion, And there Are no .rm guidelines on how to mAke such A choice. In generAl, there Are two kinds of choices to mAke: the system of rep-resentAtion (continuous or discrete, orthogonAl or nonorthogonAl) And the properties of the wAvelets themselves.
1.6.1 CompAct support
If the scAling function And wAvelet Are pActly supported, the .lters h And g Are .nite impulse response (FIR) .lters, so thAt the summAtions in the fAst wAvelet trAnsform Are .nite. This obviously is of use in implementAtion. If they Are not pActly supported, A fAst decAy is desirAble so thAt the .lters cAn be ApproximAted reAsonAbly by .nite impulse response .lters.

1.6.2 RAtionAl coe.cients
For puter implementAtions, it is of use if the coe.cients of the .lters h And g Are rAtionAls.

1.6.3 Symmetry
If the scAling function And wAvelet Are symmetric, then the .lters hAve generAlised lineAr phAse. The Absence of this property cAn leAd to phAse distortion. This is importAnt in signAl processing ApplicAtions.

1.6.4 Smoothness
The smoothness of wAvelets is very importAnt in ApplicAtions. A higher degree of smoothness corresponds to better frequency locAlisAtion of the .lters. Smooth bA-sis functions Are desired in numericAl AnAlysis ApplicAtions where derivAtives Are involved. The order of regulArity of A wAvelet is the number of its continuous derivA-tives.

序言



《波的奧秘:現代工程中的應用探索》 序言 在物理世界中,波無處不在,從微觀的量子漲落到宏觀的宇宙膨脹,它們以各種形式傳遞著信息與能量。然而,波的形態並非總是規則的正弦波,許多復雜的現實世界現象,其背後的數學描述卻遠超簡單的周期性振動。《波的奧秘:現代工程中的應用探索》正是為瞭揭示這些隱藏在復雜波形中的精妙規律,並將其轉化為強大的工程工具而誕生的。本書並非一本枯燥的數學定理堆砌,而是緻力於展現如何運用波的概念,特彆是小波(Wavelets)這一強大的數學工具,來解決工程領域中的實際問題,從而突破傳統方法的局限,開啓更高效、更精準的工程分析與設計之門。 引言:超越傅裏葉,擁抱時頻分析的革命 自傅裏葉分析問世以來,它極大地推動瞭我們理解和處理信號的進程。通過將任何信號分解為一係列不同頻率的正弦波的疊加,傅裏葉分析在諸如通信、音頻處理和振動分析等領域取得瞭輝煌的成就。然而,傅裏葉分析的根本局限在於它提供的是信號的全局頻率信息,而無法揭示信號在不同時間點上的頻率變化。換言之,它告訴你一個信號“包含哪些頻率”,卻無法準確告訴你“在何時何地齣現何種頻率”。 在許多工程應用中,這種時域信息的丟失是緻命的。例如,在分析機械設備的故障時,關鍵的異常往往隻發生在短暫的瞬間,並且伴隨著特定的頻率特徵。傳統的傅裏葉分析可能會因為這些瞬時信號被平均到整個時間段,而難以被察覺。同樣,在圖像處理中,邊緣、紋理等重要特徵都具有時間和空間上的局部性,需要能夠同時捕捉這些局部信息的方法。 正是在這樣的背景下,小波分析應運而生。與傅裏葉分析不同,小波分析使用一組“小波”(wavelets),這些小波具有有限的持續時間和局部化的能量,並且可以通過伸縮(改變尺度)和移動(改變位置)來匹配信號的不同特徵。這使得小波分析能夠同時提供信號在時間和頻率(或尺度)上的信息,實現“時頻局部化”分析。這就像是用一個帶有放大鏡和定位器的顯微鏡,可以精確地觀察信號在特定時間和特定“尺度”上的細節。 《波的奧秘:現代工程中的應用探索》將係統地介紹小波分析的核心概念,包括連續小波變換(CWT)和離散小波變換(DWT),以及各種不同類型的小波基函數(如Haar、Daubechies、Mexican Hat等)的特性及其適用場景。本書將用清晰的語言和直觀的圖示,幫助讀者理解小波變換的數學原理,並通過大量的工程實例,展示這些原理如何轉化為解決實際問題的強大工具。 第一部分:小波分析的理論基石 本部分將為讀者構建堅實的小波分析理論基礎。我們將從以下幾個方麵展開: 信號的本質與挑戰: 深入探討工程信號的各種特性,包括周期性、非周期性、瞬時性、噪聲以及多尺度特性。分析傳統信號處理方法(如傅裏葉變換)在處理復雜信號時的局限性,為引入小波分析奠定基礎。 連續小波變換(CWT): 詳細闡述CWT的數學定義,解釋尺度(scale)和位移(translation)的物理意義。通過構造和分析不同小波函數的示例,展示CWT如何捕捉信號在不同尺度和位置上的信息。我們將探討CWT在信號去噪、特徵提取等方麵的潛力。 離散小波變換(DWT): 重點介紹DWT,這是小波分析在實際工程中應用最廣泛的形式。我們將深入講解多分辨率分析(MRA)的概念,以及DWT如何通過一係列的濾波器組(高通濾波器和低通濾波器)將信號分解成不同尺度的近似(低頻)和細節(高頻)分量。我們將討論DWT的能量守恒性、正交性以及其在數據壓縮和信號重構中的優勢。 小波基函數的選擇: 介紹不同類型的小波基函數,如Haar小波、Daubechies小波係列(dbN)、Symlets小波、Coiflets小波等。分析它們的數學性質(如消失矩、支撐長度、對稱性)和在不同應用中的優缺點,幫助讀者根據具體工程問題選擇最閤適的小波基。 小波包(Wavelet Packets)與最優分解: 進一步拓展小波分析的工具箱,介紹小波包的概念。小波包提供瞭更靈活的分解方式,允許對信號的細節分量進行進一步的分解,從而獲得更精細的時頻分辨率。我們將討論如何通過信息準則(如熵)來選擇最優的小波包分解。 第二部分:小波分析在工程領域的實踐應用 理論的構建是為瞭更好地指導實踐。本部分將聚焦於小波分析在各個工程領域的具體應用,通過大量案例研究,展現其解決實際問題的能力。 信號去噪與濾波: 噪聲是工程測量中不可避免的問題。小波分析憑藉其齣色的時頻局部化能力,能夠有效地將信號的有用信息與噪聲分離開。我們將介紹基於小波閾值處理的去噪方法,包括硬閾值和軟閾值方法,並分析其在去除不同類型噪聲(如高斯噪聲、脈衝噪聲)時的效果。將通過實例展示在傳感器數據、音頻信號、圖像信號等領域的去噪應用。 特徵提取與模式識彆: 許多工程係統中的異常或關鍵信息都錶現為信號中的局部突變、瞬時峰值或特定頻率成分。小波變換能夠將這些特徵清晰地展現齣來。我們將探討如何利用小波係數的統計特性、能量分布等信息,來提取信號的特徵,並將其用於模式識彆。應用場景將涵蓋機械故障診斷(如軸承、齒輪的早期故障檢測)、生物醫學信號分析(如心電圖、腦電圖的異常檢測)以及工業過程監控。 數據壓縮: 隨著數據量的不斷增長,高效的數據壓縮技術變得至關重要。小波變換在信號和圖像壓縮方麵錶現齣色,能夠以較低的失真獲得較高的壓縮比。我們將深入研究基於DWT的圖像壓縮算法(如JPEG 2000),解釋其工作原理,並分析其相對於DCT(離散餘弦變換)等傳統方法的優勢。 信號重構與近似: 在許多情況下,我們需要從原始信號的某個近似版本或部分信息中重構齣有用的信號。小波分析提供瞭強大的信號重構工具。我們將討論如何利用小波係數來近似和重構信號,以及在保持關鍵信息的同時,減少數據冗餘。 時頻分析與瞬態現象探測: 對於那些在時間上具有局部性、頻率上具有瞬時性的現象,如衝擊、瞬態振動、突發性放電等,小波分析是唯一有效的分析工具。我們將展示如何利用小波變換的二維時頻圖(scalogram),直觀地觀測信號的瞬態行為,並將其應用於諸如結構健康監測、材料斷裂分析等領域。 特定工程領域的深度應用: 機械工程: 機械故障診斷、振動信號分析、材料疲勞壽命預測、非破壞性檢測。 土木工程: 結構健康監測、地震信號分析、材料缺陷檢測、橋梁健康評估。 電氣工程: 電力係統暫態分析、電能質量監測、高壓放電檢測、傳感器信號處理。 航空航天工程: 飛機結構健康監測、飛行器振動分析、材料損傷檢測。 醫學工程: 生物信號(ECG, EEG, EMG)分析、醫學圖像處理、無創診斷。 環境工程: 汙染物監測、環境信號噪聲去除、水質分析。 第三部分:進階話題與未來展望 本部分將帶領讀者深入探討小波分析的更高級主題,並展望其在未來工程發展中的潛在應用。 多維小波分析: 擴展小波分析的應用範圍,討論二維、三維甚至更高維度的小波變換,以及其在圖像處理、視頻分析、多維數據分析等領域的應用。 自適應小波與優化: 探討如何根據信號的特性自適應地選擇或構造最優的小波基,以及相關的優化算法。 小波與機器學習的結閤: 介紹如何將小波分析作為特徵提取器,與機器學習算法(如支持嚮量機、神經網絡)相結閤,構建更強大、更魯棒的預測與分類模型。 小波在新型傳感器與探測技術中的應用: 展望小波分析在未來新型傳感技術、物聯網(IoT)數據處理、智能製造等領域的發展潛力。 小波分析的計算效率與並行化: 探討如何提高小波變換的計算效率,以及其在高性能計算和實時應用中的實現。 結語 《波的奧秘:現代工程中的應用探索》旨在成為一本既具理論深度又不失實踐價值的參考書。我們相信,通過深入理解和掌握小波分析這一強大的數學工具,工程師們將能夠更有效地應對日益復雜和精密的工程挑戰,推動技術進步,並為創造更美好的未來貢獻力量。本書的每一章節都力求邏輯清晰,內容詳實,並通過豐富的圖錶和實例,幫助讀者將抽象的數學概念轉化為解決實際工程問題的具體方法。我們希望本書能激發讀者對波的奧秘的探索熱情,並將其所學應用於各自的工程實踐中。

用戶評價

評分

這本書的封麵設計簡潔大方,深藍色的背景搭配銀色的書名,透露齣一種嚴謹而深邃的科技感。我平時對數學理論和工程應用之間的交叉領域就頗感興趣,所以當我在書店裏看到它時,立刻就被吸引瞭。雖然我還沒有深入閱讀,但僅僅是翻閱目錄,就能感受到其內容的廣度和深度。從基礎的數學原理,到各種工程領域的具體應用,這本書似乎涵蓋瞭一個相當完整的知識體係。我尤其期待書中關於信號處理和圖像分析部分的講解,因為這些是我工作中最常接觸到的領域,我希望這本書能為我提供一些新的視角和更深入的理論支撐。此外,書中的一些案例研究也引起瞭我的好奇,它們是如何將抽象的數學工具轉化為解決實際工程問題的有效手段的,這一點非常吸引我。整體而言,這本書給我一種“乾貨滿滿”的預感,相信在未來一段時間裏,它將成為我案頭的常客。

評分

這次藉到的這本《Wavelets in Engineering Applications》,雖然封麵看上去很“硬核”,但實際閱讀體驗卻遠超我的預期。我一直對小波變換這種數學工具的應用場景感到好奇,總覺得它比傳統的傅裏葉變換更加靈活和強大,尤其是在處理非平穩信號方麵。這本書恰好就深入淺齣地介紹瞭小波變換的原理,並且非常實在地展示瞭它在工程領域的多樣化應用。例如,書中對振動分析的章節,詳細解釋瞭如何利用小波去識彆和定位信號中的瞬態特徵,這對於故障診斷和結構健康監測來說,無疑是至關重要的。我個人也曾遇到過類似的工程問題,當時苦於沒有閤適的工具來精確分析,讀到這裏的時候,我仿佛找到瞭“救星”。書中大量的圖示和公式推導,雖然需要仔細研讀,但對於想要真正理解其精髓的讀者來說,是不可或缺的。

評分

這本書簡直是我近期在工程領域研究中的一個意外驚喜。我之前接觸過一些關於小波變換的零散資料,但總是感覺不成體係,缺乏一個清晰的脈絡。而這本《Wavelets in Engineering Applications》恰恰填補瞭這一空白。它係統地梳理瞭小波變換的數學基礎,並在此基礎上,詳細闡述瞭其在各種工程問題中的應用。我對於書中關於模式識彆和數據壓縮章節的講解尤為印象深刻。在實際工作中,我們經常需要從大量的數據中提取有用的信息,或者將數據進行高效的壓縮以節省存儲空間。書中關於小波在這些方麵的應用,提供瞭一些非常實用的算法和技術,這讓我對如何更有效地處理工程數據有瞭全新的認識。而且,書中使用的語言非常嚴謹,但又不失清晰,即使是對於一些復雜的概念,也能通過清晰的解釋和圖示來理解。

評分

當我翻開這本《Wavelets in Engineering Applications》時,立刻被它嚴謹的學術風格和深厚的工程實踐相結閤所吸引。我一直認為,純粹的數學理論固然重要,但如果不能在實際工程中得到應用,它的價值就會大打摺扣。而這本書正是做到瞭這一點。它不僅詳細介紹瞭小波變換的數學原理,更重要的是,它提供瞭大量不同工程領域中的實際應用案例。我尤其對書中關於故障診斷和信號去噪的章節感到興奮,這些都是我們在實際工程項目中經常會遇到的挑戰。書中提供的解決方案,不僅有理論上的指導,更有具體的算法實現和效果展示,這對於工程師來說,無疑是非常寶貴的參考資料。我迫不及待地想要將書中學到的知識應用到我的項目實踐中,相信它會為我帶來新的思路和更優的解決方案。

評分

說實話,我一開始拿到這本書的時候,有點擔心它會不會太過於理論化,讓我在實際應用中無從下手。但當我真正開始閱讀後,這種顧慮完全打消瞭。這本書的結構安排非常巧妙,它並沒有一開始就堆砌大量的數學公式,而是先從工程領域的一些典型問題入手,然後引齣小波變換在解決這些問題中的作用。這種“問題導嚮”的學習方式,讓我更容易理解為什麼需要小波變換,以及它具體是如何工作的。我特彆欣賞書中對於不同工程學科應用的區分,比如在材料科學、機械工程、以及通信係統等領域的案例分析,都非常具體且貼閤實際。例如,在材料科學部分,書中探討瞭如何利用小波分析材料的微觀結構,發現潛在的缺陷,這對我日後的科研工作會有很大的啓發。

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有