(全英文)半導體納米材料在太赫茲電場中的特性瀋韜

(全英文)半導體納米材料在太赫茲電場中的特性瀋韜 pdf epub mobi txt 電子書 下載 2025

瀋韜 著
圖書標籤:
  • Semiconductor Nanomaterials
  • Terahertz
  • Terahertz Spectroscopy
  • Nanomaterials
  • Semiconductors
  • Optoelectronics
  • Material Science
  • Physics
  • Nanotechnology
  • THz Technology
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
店鋪: 博學精華圖書專營店
齣版社: 冶金工業齣版社
ISBN:9787502461614
商品編碼:29729344001
包裝:平裝
齣版時間:2014-03-01

具體描述

基本信息

書名:(全英文)半導體納米材料在太赫茲電場中的特性瀋韜

:36.00元

售價:24.5元,便宜11.5元,摺扣68

作者:瀋韜

齣版社:冶金工業齣版社

齣版日期:2014-03-01

ISBN:9787502461614

字數

頁碼

版次:1

裝幀:平裝

開本:16開

商品重量:0.4kg

編輯推薦


內容提要

本書係統詳盡地介紹瞭半導體基礎納米結構在太赫茲電場中的響應特性、空間載流子受激運動機理、解析及快速分析的方法。涵蓋瞭半導體基礎理論,載流子輸運方程分析、有限元數值方法解析、等效電路分析方法等內容。《半導體納米材料在太赫茲電場中的特性(英文版)》由瀋韜編著。

目錄

1 Introduction
 References
2 Theoretical Framework
 2.1 Electromagic Field Theory
 2.2 Brief Review on Related Semiconductor Physics
  2.2.1 Energy band theory
  2.2.2 Carrier concentration at thermal equilibrium
 2.3 Charge Transport in Semiconductor
 References
3 Semiconductor Nanostructure in the Static Electric Field 
 3.1 Semiconductor Nanoplate in the Static Field
 3.2 Semiconductor Nanoparticle in the Static Field
4 Response of Elementary Semiconductor Nanostructures in Quasi-Static Electric Field
 4.1 Carrier Dynamics
 4.2 Semiconductor Nanoplate in the Quasi-Static Field
 4.3 Semiconductor Nanoparticle in the Quasi-Static Field
 References
5 Full Wave Analysis
 5.1 Full Wave Analysis of a Semiconductor Nanoparticle
 5.2 Response of Semiconductor Nanoparticle with High Doping Level in Dynamic Field
6 Equivalent Circuit Representation for Conductive Nanostructure
 6.1 Basic Concepts of Equivalent Circuit
 6.2 Equivalent Circuit Representation for the Semiconductor Nanoplate
 6.3 Equivalent Circuit Representation for the Semiconductor Nanoparticle
 6.4 Equivalent Circuit Representation for the Metal Nanoparticle
 References
7 Conclusion
 7.1 Summary
 7.2 Suggestions for Future Work
Appendix A
Appendix B

作者介紹


文摘


序言



Novel Explorations in Terahertz Spectroscopy and Quantum Dots: A Material Science Perspective This monograph delves into the intricate interplay between novel semiconductor nanostructures and the application of terahertz (THz) electromagnetic fields, offering a comprehensive exploration of their unique physical properties and potential technological breakthroughs. Moving beyond conventional material characterization, this work focuses on meticulously engineered quantum dot (QD) systems, specifically silicon and germanium based, as a platform for understanding and harnessing complex THz interactions. The research presented here bridges fundamental condensed matter physics with cutting-edge material science, aiming to provide a detailed understanding of how quantum confinement and surface effects within these nanostructures dictate their response to THz radiation. The initial chapters lay a robust theoretical and experimental groundwork. A thorough review of THz spectroscopy techniques, from time-domain (THz-TDS) to frequency-domain (THz-FDS) methods, is presented, highlighting their strengths and limitations in probing nanoscale phenomena. Emphasis is placed on advanced spectroscopic approaches, including pump-probe spectroscopy and coherent control experiments, designed to unravel the ultrafast dynamics of charge carriers and excitations within semiconductor nanostructures. The theoretical framework draws upon quantum mechanical principles governing carrier behavior in confined geometries, incorporating concepts such as effective mass approximation, band structure modifications due to quantum confinement, and the role of dielectric mismatch at material interfaces. Detailed discussions on the selection rules for THz transitions within QDs, considering their specific symmetry and dimensionality, are provided. A significant portion of the monograph is dedicated to the synthesis and characterization of tailored silicon and germanium quantum dots. The authors meticulously describe various top-down and bottom-up fabrication techniques, including ion implantation, colloidal synthesis, and epitaxial growth methods. Each fabrication route is critically assessed for its ability to control QD size, shape, composition, and surface passivation, as these parameters are paramount in dictating THz optical properties. Advanced characterization techniques, such as high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), are employed to verify the structural integrity and surface chemistry of the synthesized QDs. Furthermore, the importance of precise size and shape control is underscored by theoretical calculations predicting distinct THz absorption and emission signatures for different QD morphologies. The core of the research lies in the investigation of THz field interactions with carrier populations within these nanostructures. The monograph presents in-depth analyses of intraband and interband transitions in silicon and germanium QDs under THz irradiation. For silicon QDs, particular attention is paid to the unique electronic band structure, characterized by indirect bandgaps, and how quantum confinement influences the effective bandgap and optical transitions in the THz range. The authors explore the possibility of engineering THz absorption cross-sections through careful control of QD size and the introduction of specific dopants. Similarly, for germanium QDs, the direct bandgap nature and the presence of lighter and heavier holes are discussed in relation to their THz response. The influence of strain engineering, often inherent in QD growth processes, on the THz optical properties is also meticulously investigated. Beyond simple absorption, the monograph explores more sophisticated THz phenomena. This includes a detailed examination of carrier dynamics, such as photoexcitation and relaxation processes, mediated by THz pulses. The temporal evolution of carrier populations, their scattering mechanisms, and the lifetimes of excited states are probed using ultrafast THz spectroscopy. The role of phonons – both confined and interface phonons – in mediating energy relaxation and decoherence is extensively studied, offering insights into the quantum nature of carrier interactions within the nanostructure. The authors present novel findings on phonon-assisted THz absorption and emission, highlighting their dependence on QD size and strain. A key innovation presented is the exploration of THz-induced non-linear optical effects in these nanostructures. The monograph investigates phenomena such as harmonic generation, four-wave mixing, and saturable absorption in the THz regime. These non-linear responses are crucial for developing advanced optical switching and signal processing applications. The authors present experimental evidence and theoretical models explaining the origin of these non-linearities, attributing them to the strong confinement of carriers and the resulting modification of their dielectric response under intense THz fields. The dependence of these non-linearities on QD size distribution, surface defects, and carrier density is systematically analyzed. The work also extends to the investigation of collective phenomena within assemblies of semiconductor QDs. The influence of inter-dot coupling and plasmonic effects on the THz optical response is explored. For instance, the authors discuss how the arrangement and proximity of QDs can lead to enhanced THz absorption or the emergence of collective modes. This opens avenues for designing metamaterials and other nanostructured composites with tunable THz properties. The role of substrate effects and encapsulation layers in modifying the THz response of QD films is also addressed, providing practical considerations for device fabrication. Furthermore, the monograph provides a comprehensive overview of the potential applications of THz-active semiconductor nanostructures. This includes discussions on THz detectors, modulators, emitters, and sensors. The ability to engineer the THz spectral response and carrier dynamics of QDs makes them promising candidates for high-performance THz optoelectronic devices. Specific examples of envisioned applications include non-destructive imaging, security screening, chemical and biological sensing, and advanced telecommunications. The authors emphasize the advantages offered by semiconductor QDs, such as room-temperature operation, high sensitivity, and the potential for integration with existing semiconductor technologies. Finally, the monograph concludes with a forward-looking perspective on future research directions. This includes exploring novel QD materials, such as III-V semiconductors and 2D materials, for THz applications, as well as investigating more complex QD architectures, such as core-shell structures and vertically aligned arrays. The potential for exploiting quantum entanglement and topological properties in THz nanophotonic devices is also briefly touched upon. The authors highlight the critical need for further advancements in fabrication techniques for achieving even greater control over QD properties and for developing efficient coupling mechanisms between QDs and THz fields. The challenges associated with scaling up production and integrating these nanostructures into functional devices are also acknowledged, paving the way for future innovations in the field of THz science and technology.

用戶評價

評分

這本書的排版和公式的準確性無可挑剔,這無疑是專業學術著作的標誌。然而,我發現其中關於“非綫性”效應的討論,似乎沒有跟上近幾年太赫茲科學的快速發展。我們知道,在強太赫茲場下,載流子的輸運會呈現齣明顯的非綫性行為,這對於高功率器件的設計至關重要。我期待能讀到關於太赫茲倍頻或太赫茲場誘導的等離子體振蕩的非綫性響應的深入分析。書中的內容大多集中在綫性響應理論的框架內,對高場下的載流子加熱效應、帶間躍遷的飽和現象等前沿課題涉及甚少。這使得這本書在時效性上略顯不足,對於希望瞭解當前研究熱點的人來說,可能會覺得信息有所滯後。此外,對於不同禁帶寬度半導體材料在太赫茲波段的異質結界麵處載流子行為的差異化處理,也沒有得到足夠的篇幅來詳盡闡述。

評分

這本書的封麵設計相當引人注目,那種深邃的藍色調與閃爍的微光,似乎在暗示著對未知前沿領域的探索。我剛拿到手的時候,首先被其厚重感所吸引,這通常意味著內容詳實,絕非泛泛而談的科普讀物。我原本期望能從中找到一些關於量子點或二維材料在光電器件中應用的實際案例,比如如何優化器件的效率或者提高其穩定性。然而,這本書的論述似乎更加偏嚮於理論物理的基石層麵,對於工程應用層麵的著墨不多,這讓我感到有些意外。我更傾嚮於那種能夠將復雜的物理現象,通過清晰的數學模型和直觀的實驗數據聯係起來的著作。這本書的行文風格,雖然嚴謹,但偶爾會顯得有些晦澀,需要反復閱讀纔能把握其核心思想。我希望能看到更多關於實際製造工藝中遇到的挑戰,以及如何通過納米尺度的結構調控來規避這些問題的深度討論,而不是僅僅停留在“原理是這樣的”這個層麵。總而言之,它更像是一本為高年級研究生或研究人員準備的專業參考書,而不是麵嚮跨學科工程師的實用手冊。

評分

我最近對超快光譜學在材料科學中的應用非常感興趣,特彆是在研究電子-聲子耦閤動態過程方麵。我原以為這本書會深入探討如何利用太赫茲脈衝來探測半導體異質結中的載流子弛豫機製。當我翻閱目錄時,我注意到關於時間分辨技術的部分相對簡略,這讓我感到有些失望。我期待看到的是像泵浦-探測(Pump-Probe)實驗在太赫茲波段的最新進展,特彆是如何分辨不同的散射過程,例如德魯德(Drude)模型與洛倫茲(Lorentz)模型的適用邊界。這本書更多地側重於宏觀電磁響應的經典描述,而對於微觀層麵的動力學過程,例如載流子的輸運特性是如何受限於納米尺度的邊界條件和缺陷態影響的,討論得不夠透徹。我對那些能清晰闡述如何通過改變材料的晶格缺陷密度來調控太赫茲吸收譜的章節抱有很高的期望,但實際內容更像是對現有電磁理論的梳理,缺乏新穎的、實驗驅動的見解。

評分

這本書的理論深度毋庸置疑,它成功地構建瞭一個描述半導體納米體係在太赫茲場下響應的嚴密框架。但從閱讀體驗上講,我感覺它缺少瞭一種“敘事性”。好的技術書籍不僅要提供知識,還要講述知識是如何被發現、如何解決實際難題的曆程。這本書更像是一份詳盡的數學推導手冊,缺少瞭研究者在麵對實驗異常時如何修正模型、如何提齣新假設的思維過程。比如,在討論錶麵等離子體激元時,我更希望看到如何通過對比不同錶麵粗糙度下的實驗結果,來反推錶麵態密度分布的具體方法,而不是直接給齣一個基於理想模型的結論。閱讀體驗上,我更偏愛那些夾雜著研究者“Aha!”時刻的著作。這本書的語言過於學術化和去情境化,使得那些原本可以通過生動的案例來加強理解的概念,顯得有些枯燥和難以親近。它是一本紮實的工具書,但缺少瞭點燃讀者好奇心的火花。

評分

作為一名從事新型傳感器開發的工程師,我一直關注如何利用介電常數的顯著變化來設計高靈敏度的化學或生物傳感器。我希望這本書能提供一些關於納米結構如何增強太赫茲波與目標分子相互作用的詳細設計指南,比如錶麵等離子體共振(SPR)在太赫茲波段的工程化應用。這本書中關於結構效應的討論,更多地停留在“尺寸效應”的定性描述上,缺少對特定幾何形狀(如納米綫陣列、圓柱體)與入射電磁場耦閤強度的量化分析。我更希望看到的是一套設計參數的優化流程,比如如何計算齣最佳的結構周期性以達到最大的靈敏度指標。書中的圖錶雖然專業,但很多是理論計算的結果,而非與實際器件性能直接掛鈎的實測數據對比。如果能加入更多關於太赫茲波與生物分子(如蛋白質、DNA)之間特徵吸收峰的直接映射實例,那對我的工作將更有指導意義。目前的敘述方式,更像是停留在對基礎物理現象的精確描述階段,而“應用”二字似乎被輕描淡寫瞭。

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有