帶跳的隨機微分方程理論及其應用(英文版) [Theory of Stochastic Differential Equations with Jumps and Applications]

帶跳的隨機微分方程理論及其應用(英文版) [Theory of Stochastic Differential Equations with Jumps and Applications] 下載 mobi epub pdf 電子書 2025


簡體網頁||繁體網頁
司徒榮 著

下載链接在页面底部


點擊這裡下載
    

想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2025-01-21


圖書介紹


齣版社: 世界圖書齣版公司
ISBN:9787510040566
版次:1
商品編碼:10914314
包裝:平裝
外文名稱:Theory of Stochastic Differential Equations with Jumps and Applications
開本:24開
齣版時間:2012-01-01
用紙:膠版紙
頁數:434##


類似圖書 點擊查看全場最低價

相關圖書





圖書描述

內容簡介

《帶跳的隨機微分方程理論及其應用(英文版)》是一部講述隨機微分方程及其應用的教程。內容全麵,講述如何很好地引入和理解ito積分,確定瞭ito微分規則,解決瞭求解sde的方法,闡述瞭girsanov定理,並且獲得瞭sde的弱解。書中也講述瞭如何解決濾波問題、鞅錶示定理,解決瞭金融市場的期權定價問題以及著名的black-scholes公式和其他重要結果。特彆地,書中提供瞭研究市場中金融問題的倒嚮隨機技巧和反射sed技巧,以便更好地研究優化隨機樣本控製問題。這兩個技巧十分高效有力,還可以應用於解決自然和科學中的其他問題。

內頁插圖

目錄

preface
acknowledgement
abbreviations and some explanations
Ⅰ stochastic differential equations with jumps inrd
1 martingale theory and the stochastic integral for point
processes
1.1 concept of a martingale
1.2 stopping times. predictable process
1.3 martingales with discrete time
1.4 uniform integrability and martingales
1.5 martingales with continuous time
1.6 doob-meyer decomposition theorem
1.7 poisson random measure and its existence
1.8 poisson point process and its existence
1.9 stochastic integral for point process. square integrable mar tingales
2 brownian motion, stochastic integral and ito's formula
2.1 brownian motion and its nowhere differentiability
2.2 spaces 0 and z?
2.3 ito's integrals on l2
2.4 ito's integrals on l2,loc
2.5 stochastic integrals with respect to martingales
2.6 ito's formula for continuous semi-martingales
2.7 ito's formula for semi-martingales with jumps
2.8 ito's formula for d-dimensional semi-martingales. integra tion by parts
2.9 independence of bm and poisson point processes
2.10 some examples
2.11 strong markov property of bm and poisson point processes
2.12 martingale representation theorem
3 stochastic differential equations
3.1 strong solutions to sde with jumps
3.1.1 notation
3.1.2 a priori estimate and uniqueness of solutions
3.1.3 existence of solutions for the lipschitzian case
3.2 exponential solutions to linear sde with jumps
3.3 girsanov transformation and weak solutions of sde with jumps
3.4 examples of weak solutions
4 some useful tools in stochastic differential equations
4.1 yamada-watanabe type theorem
4.2 tanaka type formula and some applications
4.2.1 localization technique
4.2.2 tanaka type formula in d-dimensional space
4.2.3 applications to pathwise uniqueness and convergence of solutions
4.2.4 tanaka type formual in 1-dimensional space
4.2.5 tanaka type formula in the component form
4.2.6 pathwise uniqueness of solutions
4.3 local time and occupation density formula
4.4 krylov estimation
4.4.1 the case for 1-dimensional space
4.4.2 the case for d-dimensional space
4.4.3 applications to convergence of solutions to sde with jumps
5 stochastic differential equations with non-lipschitzian co efficients
5.1 strong solutions. continuous coefficients with pconditions 1
5.2 the skorohod weak convergence technique
5.3 weak solutions. continuous coefficients
5.4 existence of strong solutions and applications to ode
5.5 weak solutions. measurable coefficient case

Ⅱ applications
6 how to use the stochastic calculus to solve sde
6.1 the foundation of applications: ito's formula and girsanov's theorem
6.2 more useful examples
7 linear and non-linear filtering
7.1 solutions of sde with functional coefficients and girsanov theorems
7.2 martingale representation theorems (functional coefficient case)
7.3 non-linear filtering equation
7.4 optimal linear filtering
7.5 continuous linear filtering. kalman-bucy equation
7.6 kalman-bucy equation in multi-dimensional case
7.7 more general continuous linear filtering
7.8 zakai equation
7.9 examples on linear filtering
8 option pricing in a financial market and bsde
8.1 introduction
8.2 a more detailed derivation of the bsde for option pricing
8.3 existence of solutions with bounded stopping times
8.3.1 the general model and its explanation
8.3.2 a priori estimate and uniqueness of a solution
8.3.3 existence of solutions for the lipschitzian case
8.4 explanation of the solution of bsde to option pricing
8.4.1 continuous case
8.4.2 discontinuous case
8.5 black-scholes formula for option pricing. two approaches
8.6 black-scholes formula for markets with jumps
8.7 more general wealth processes and bsdes
8.8 existence of solutions for non-lipschitzian case
8.9 convergence of solutions
8.10 explanation of solutions of bsdes to financial markets
8.11 comparison theorem for bsde with jumps
8.12 explanation of comparison theorem. arbitrage-free market
8.13 solutions for unbounded (terminal) stopping times
8.14 minimal solution for bsde with discontinuous drift
8.15 existence of non-lipschitzian optimal control. bsde case
8.16 existence of discontinuous optimal control. bsdes in rl
8.17 application to pde. feynman-kac formula
9 optimal consumption by h-j-b equation and lagrange method
9.1 optimal consumption
9.2 optimization for a financial market with jumps by the lagrange method
9.2.1 introduction
9.2.2 models
9.2.3 main theorem and proof
9.2.4 applications
9.2.5 concluding remarks
10 comparison theorem and stochastic pathwise control '
10.1 comparison for solutions of stochastic differential equations
10.1.1 1-dimensional space case
10.1.2 component comparison in d-dimensional space
10.1.3 applications to existence of strong solutions. weaker conditions
10.2 weak and pathwise uniqueness for 1-dimensional sde with jumps
10.3 strong solutions for 1-dimensional sde with jumps
10.3.1 non-degenerate case
10.3.2 degenerate and partially-degenerate case
10.4 stochastic pathwise bang-bang control for a non-linear system
10.4.1 non-degenerate case
10.4.2 partially-degenerate case
10.5 bang-bang control for d-dimensional non-linear systems
10.5.1 non-degenerate case
10.5.2 partially-degenerate case
11 stochastic population conttrol and reflecting sde
11.1 introduction
11.2 notation
11.3 skorohod's problem and its solutions
11.4 moment estimates and uniqueness of solutions to rsde
11.5 solutions for rsde with jumps and with continuous coef- ficients
11.6 solutions for rsde with jumps and with discontinuous co- etticients
11.7 solutions to population sde and their properties
11.8 comparison of solutions and stochastic population control
11.9 caculation of solutions to population rsde
12 maximum principle for stochastic systems with jumps
12.1 introduction
12.2 basic assumption and notation
12.3 maximum principle and adjoint equation as bsde with jumps
12.4 a simple example
12.5 intuitive thinking on the maximum principle
12.6 some lemmas
12.7 proof of theorem 354
a a short review on basic probability theory
a.1 probability space, random variable and mathematical ex- pectation
a.2 gaussian vectors and poisson random variables
a.3 conditional mathematical expectation and its properties
a.4 random processes and the kolmogorov theorem
b space d and skorohod's metric
c monotone class theorems. convergence of random processes41
c.1 monotone class theorems
c.2 convergence of random variables
c.3 convergence of random processes and stochastic integrals
references
index

前言/序言



帶跳的隨機微分方程理論及其應用(英文版) [Theory of Stochastic Differential Equations with Jumps and Applications] 下載 mobi epub pdf txt 電子書 格式

帶跳的隨機微分方程理論及其應用(英文版) [Theory of Stochastic Differential Equations with Jumps and Applications] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2025

帶跳的隨機微分方程理論及其應用(英文版) [Theory of Stochastic Differential Equations with Jumps and Applications] 下載 mobi pdf epub txt 電子書 格式 2025

帶跳的隨機微分方程理論及其應用(英文版) [Theory of Stochastic Differential Equations with Jumps and Applications] 下載 mobi epub pdf 電子書
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

好好好

評分

太數學化,適閤數學係學生

評分

內容專業,適閤專業人士使用

評分

還可以

評分

還可以

評分

此書在學習隨機微分方程時還可以的

評分

還可以

評分

不錯的書。。。。。。

評分

太數學化,適閤數學係學生

類似圖書 點擊查看全場最低價

帶跳的隨機微分方程理論及其應用(英文版) [Theory of Stochastic Differential Equations with Jumps and Applications] mobi epub pdf txt 電子書 格式下載 2025


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2025 book.cndgn.com All Rights Reserved. 新城書站 版权所有