印刷不錯,很好很實用
評分內容比較苦味,沒有工程的經驗介紹
評分當今各行業,尤其是互聯網,數據規模越來越大,要從中有效地發現模式來提高生産力,用傳統的方式已經幾乎不可能,隻能藉助計算機來完成諸多使命。因此,機器學習這一新興的學科變得越來越重要,它已經在搜索、推薦、數據挖掘等多個領域閃耀光芒。機器學習是一門交叉學科,內容涉及概率論、統計學、高等數學、計算機科學等多門學科。該學科緻力於設計一種讓計算機具有“學習”能力的算法,通過發現經驗數據中隱藏的模式,實現對未知數據的預測。
評分印刷不錯,很好很實用
評分全書案例既有問題,也有迴歸問題;既包含監督學習,也涵蓋無監督學習。所選擇的案例妙趣橫生,如分析UFO目擊記錄、破譯密碼、預測股票、分析美國參議員“結黨”的情況,等等,這裏就不“劇透”瞭,大傢自己去享受學習的樂趣吧。
評分當今各行業,尤其是互聯網,數據規模越來越大,要從中有效地發現模式來提高生産力,用傳統的方式已經幾乎不可能,隻能藉助計算機來完成諸多使命。因此,機器學習這一新興的學科變得越來越重要,它已經在搜索、推薦、數據挖掘等多個領域閃耀光芒。機器學習是一門交叉學科,內容涉及概率論、統計學、高等數學、計算機科學等多門學科。該學科緻力於設計一種讓計算機具有“學習”能力的算法,通過發現經驗數據中隱藏的模式,實現對未知數據的預測。
評分本書秉承的原則是:實踐齣真知,隻要多動手,沒有攻剋不瞭的技術難題。因此作者預期的閱讀對象是如電腦黑客般的人,要求對技術有發自內心的求知欲和好奇心,願意自己動手而非紙上談兵。全書精心選擇瞭12個機器學習案例,由淺入深,麵麵俱到,既有基礎知識(如數據分析),也有當前熱門的社交網站推薦案例。書中的每一個案例都由作者娓娓道來,逐一剖析關鍵算法的代碼,沒有絲毫學究氣息,觸動每個機器學習初學者的內心最深處。
評分給我發瞭一本舊書,太爛瞭
評分大數據時代是機器學習最美好的時代,因為數據不再是問題,各類問題都可以收集到海量的數據。但是,對於很多人來說,這一門交叉學科本身卻神秘而陌生,對於沒有係統學習過相關基礎學科的人來說尤其感到“高不可攀”。如今已齣版的機器學習相關書籍中,很多都有這個特點:公式多,晦澀難懂。這讓很多程序員齣身的人望而卻步。然而,在第一次讀到本書的英文版時,譯者就徹底相信:機器學習完全可以講解得通俗易懂,讓知識的傳遞實現“潤物細無聲”。
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有