2,良序集、Zorn引理、选择公理、态射、自然变换、环的理想、商环、同态基本定理、环的同构定理、理想的运算、局部化、素理想。
评分4,R^n上的Lebesgue测度与Lebesgue可测集、Jordan可测集、Lebesgue—Stieltjes 测度、集合的单调类、集合的Sigma-可加类、单调类定理、Suslin集、Suslin运算、Suslin集。
评分10,Laplace方程的基本解、调和函数、广义调和函数、Green公式、热流定理、球面平均值定理、极值原理、Hopf-Oleinik定理、Laplace方程的Dirichlet问题解的唯一性、Dirichlet原理。
评分 评分3,多重线性映射、双线性型、矩阵的相合变换、双线性型的秩、左根基、对称双线性型与斜对称双线性型、二次型、二次型的规范型、化二次型为规范型的方法、实二次型、惯性定理、正定二次型与正定矩阵、Jacobi方法、Sylvester定理、斜对称二次型的规范型、Pfaff型。
评分6,线性算子的范数、线性群的单参数子群、谱半径、仿射空间、仿射映射、仿射空间的同构、仿射子空间、仿射坐标系、仿射同构、Euclid度量、Gram行列式、有向体积。
评分10,正规子群、左陪集与右陪集、代表元、Lagrange定理、循环群的结构、群作用、轨道、稳定子群、正规化子、可迁群、齐次空间。
评分测度与积分
评分本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有