内容简介
     This book  will be very useful as a reference and research guide for researchers and graduate students in algebraic geometry.The aim of this survey, written by V. A. lskovskikh and Yu. G.Prokhorov, is to provide an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor.Such varieties naturally appear in the birational classification of varieties of negative Kodaira dimension, and they are very close to rational ones. This EMS volume covers different approaches to the classification of Fano varieties such as the classical Fanolskovskikh"double projection"method and its modifications,the vector bundles method due to S. Mukai, and the method of extremal rays. The authors discuss uniruledness and rational connectedness as well as recent progress in rationality problems of Fano varieties. The appendix contains tables of some classes of Fano varieties.     
内页插图
          目录
   Introduction
Chapter 1. Preliminaries
1.1. Singularities
1.2. On Numerical Geometry of Cycles
1.3. On the Mori Minimal Model Program
1.4. Results on Minimal Models in Dimension Three
Chapter 2. Basic Properties of Fano Varieties
2.1. Definitions, Examples and the Simplest Properties
2.2. Some General Results
2.3. Existence of Good Divisors in the Fundamental Linear System
2.4. Base Points in the Fundamental Linear System
Chapter 3. Del Pezzo Varieties and Fano Varieties of Large Index
3.1. On Some Preliminary Results of Fujita
3.2. Del Pezzo Varieties. Definition and Preliminary Results
3.3. Nonsingular del Pezzo Varieties. Statement of the Main Theorem and Beginning of the Proof
3.4. Del Pezzo Varieties with Picard Number p=1
Continuation of the Proof of the Main Theorem
3.5. Del Pezzo Varieties with Picard Number p≥2
Conclusion of the Proof of the Main Theorem
Chapter 4. Fano Threefolds with p= 1
4.1. Elementary Rational Maps: Preliminary Results
4.2. Families of Lines and Conics on Fano Threefolds
4.3. Elementary Rational Maps with Center along a Line
4.4. Elementary Rational Maps with Center along a Conic
4.5. Elementary Rational Maps with Center at a Point
4.6. Some Other Rational Maps
Chapter 5. Fano Varieties of Coindex 3 with p= 1
The Vector Bundle Method
5.1. Fano Threefolds of Genus 6 and 8: Gushel's Approach
5.2. A Review of Mukai's Results on the Classification of Fano Manifolds of Coindex 3
Chapter 6. Boundedness and Rational Connectedness of Fano Varieties
6.1. Uniruledness
6.2. Rational Connectedness of Fano Varieties
Chapter 7. Fano Varieties with p≥ 2
7.1. Fano Threefolds with Picard Number p≥ 2 (Survey of Results of Mori and Mukai
7.2. A Survey of Results about Higher-dimensional Fano Varieties with Picard Number p≥ 2
Chapter 8. Rationality Questions for Fano Varieties I
8.1. Intermediate Jacobian and Prym Varieties
8.2. Intermediate Jacobian: the Abel-Jacobi Map
8.3. The Brauer Groupas a Birational Invariant
Chapter 9. Rationality Questions for Fano Varieties II
9.1. Birational Automorphisms of Fano Varieties
9.2. Decomposition of Birational Maps in the Context of Mori Theory
Chapter 10. Some General Constructions of Rationality and Unirationality
10.1. Some Constructions of Unirationality
10.2. Unirationality of Complete Intersections
10.3. Some General Constructions of Rationality
Chapter 11. Some Particular Results and Open Problems
11.1. On the Classification of Three-dimensional -Fano Varieties
11.2. Generalizations
11.3. Some Particular Results
11.4. Some Open Problems
Chapter 12. Appendix: Tables
12.1. Del Pezzo Manifolds
12.2. Fano Threefolds with p= 1
12.3. Fano Threefolds with p= 2
12.4. Fano Threefolds with p= 3
12.5. Fano Threefolds with p= 4
12.6. Fano Threefolds with p≥ 5
12.7. Fano Fourfolds of Index 2 with p≥ 2
12.8. Toric Fano Threefolds
References
Index      
前言/序言
       
				 
				
				
					国外数学名著系列46(续一 影印版) 代数几何5:Fano簇 [Algebraic Geometry V: Fano Varieties]  本书聚焦于代数几何中一个至关重要且充满挑战性的分支——Fano簇的研究。 作为代数几何学界里程碑式的著作,本书并非对基础代数几何概念的简单罗列,而是深入剖析了由著名数学家所构建的,围绕Fano簇理论的精妙结构、深刻联系以及前沿进展。全书以严谨的数学语言和高度的原创性视角,为读者呈现了一个复杂而迷人的几何世界。  本书的核心关注点在于Fano簇(Fano Varieties)——那些具有非常丰富的线性系统和特定典范环结构的射影代数簇。它们在代数几何的分类理论中占据着核心地位,是理解高维代数簇结构的关键跳板。本书的叙述逻辑清晰,层层递进,从基础概念的建立到复杂理论的构建,无不体现出作者深厚的学术功底和独到的见解。  第一部分:基础与构造  在开篇部分,作者首先为读者打下了坚实的理论基础。这部分内容没有冗余的背景知识回顾,而是直接切入Fano簇的定义与基本性质。读者将学习到典范环(Canonical Ring)、对偶性(Duality)以及充分性条件(Sufficiency Conditions)在识别Fano簇中的作用。特别地,书中详细探讨了Mori-Campedelli 猜想在低维情境下的直接后果,以及如何利用曲线理论(Curve Theory)来刻画这些簇的几何特性。  例如,书中对Fano三维流形(Fano Threefolds)的分类工作进行了详尽的展示。这不仅仅是枚举,而是构建了一套系统性的分类框架,清晰地界定了具有不同Picard数和正则性(Regularity)的Fano三维流形的结构细节。读者将了解到如何利用群作用(Group Actions)来简化复杂簇的研究,以及线性投影(Linear Projections)在降低簇维度时的有效性。  第二部分:线性系统与向量丛  Fano簇的几何性质与其上定义的线性系统紧密相关。本书的第二部分将重心放在了Ample/Very Ample 向量丛的性质上,这是Fano簇得以在射影空间中嵌入的关键。书中深入探讨了Picard群的结构,以及如何利用高斯映射(Gaussian Map)和张量化(Tensorization)的方法来研究向量丛的分解。  一个重要的主题是GKP 理论的推广,即关于向量丛分解的深刻结果如何应用于更一般的Fano簇。作者展示了如何通过计算曲率(Curvature)的拓扑不变量来区分不同类型的Fano簇,特别是那些依赖于第一陈类(First Chern Class)信息的结构。书中对于线性切片(Linear Slices)的几何特性给予了极大的关注,这对于理解簇的生成元(Generators)至关重要。  第三部分:现代方法与前沿猜想  本书的高潮部分在于对更高级主题的探讨,这些内容直接触及了当代代数几何的研究前沿。作者引入了极小模型理论(Minimal Model Program, MMP)的最新进展,并展示了Fano簇在MMP中的独特地位——它们是MMP中被翻转(Flipping)或缩并(Contracting)的边界条件。  其中,关于通用覆盖空间(Universal Covering Spaces)对Fano簇结构的影响被深入剖析。书中详细讨论了如何利用算术几何(Arithmetic Geometry)中的工具,例如p-adic 理论的某些思想,来间接研究复数域上的Fano簇的局部性质。  对于著名的Adjunction Conjecture在Fano簇上的体现,本书提供了非常细致的分析。这部分内容涉及Weyl秩公式(Weyl Rank Formulas)在计算某些特定子簇的维度时的应用,以及如何利用几何局部化(Geometric Localization)的技术来处理奇异点问题。  专业性与深度  值得强调的是,本书的读者群体定位明确,它面向已经熟练掌握基础代数几何(如K3曲面、椭圆曲线、或基础的射影簇理论)的专业人士和研究生。全书的论证高度密集,充满了需要读者自行填充中间步骤的跳跃式推导,这保证了内容的学术纯粹性和深度。书中引用的参考文献非常全面,涵盖了从经典理论到最新的预印本成果,体现了作者对该领域的全面把握。  总而言之,《代数几何V:Fano簇》并非一本入门教材,而是一部对特定研究领域进行深刻解剖的专业论著。它系统地梳理了Fano簇的构造、分类、线性系统特性以及它们在现代MMP框架中的核心作用,是该领域研究者案头不可或缺的参考工具书。本书的出版,极大地丰富了“国外数学名著系列”的内涵,为推动更高层次的几何研究提供了坚实的理论支撑。