發表於2024-11-24
基本信息
書名:常微分方程定性與穩定性方法(第二版)
作者:馬知恩,周義倉,李承治
齣版社:科學齣版社
齣版日期:2015-06-01
ISBN:9787030443557
字數:473000
頁碼:364
版次:2
裝幀:平裝
開本:16開
商品重量:0.4kg
編輯推薦
《常微分方程定性與穩定性方法》可作為理工類專業研究生的教材和高年級本科生的選修課教材,也可供相關的科學技術人員參考.
內容提要
《常微分方程定性與穩定性方法》是為理工類專業的碩士研究生和高年級本科生的需要所編寫的一《常微分方程定性與穩定性方法》.《常微分方程定性與穩定性方法》為第二版.主要包括定性理論、穩定性理論和分支理論三個部分.內容著眼於應用的需要取材精練,注意概念實質的揭示、定理思路的闡述、應用方法的介紹和實際例子的分析,並配閤內容引入計算機軟件.每章後附有習題供讀者練習.
目錄
目錄
第二版前言
第一版前言
第 1 章 基本定理 1
1.1 解的存在唯一性定理 1
1.2 解的延拓 3
1.3 解對初值和參數的連續依賴性和可微性 9
1.4 比較定理 13
習題 1 21
第 2 章 動力係統的基本知識 23
2.1 自治係統與非自治係統 23
2.1.1 相空間與軌綫 23
2.1.2 自治係統的基本性質 25
2.1.3 動力係統的概念 28
2.2 軌綫的極限集閤.29
2.2.1 常點與奇點 29 2.2.2 自治係統解的延拓性 30
2.2.3 極限集與 極限集及其基本性質 32
2.3 平麵上的極限集.35
2.3.1 平麵有界極限集的特性與結構35
2.3.2 Poincar.e-Bendixson 環域定理37
2.4 極限集的應用實例 39
2.4.1 Volterra 捕食{被捕食模型 39
2.4.2 三極管電路的 van der Pol 方程 42
習題 2 44
第 3 章 穩定性理論 46
3.1 穩定性的定義和例子 46
3.1.1 穩定性的幾個定義 46
3.1.2 穩定性的關係及例子 49
3.2 自治係統零解的穩定性 54
3.2.1 V 函數 54?
3.2.2 Liapunov 穩定性定理 55
3.2.3 不穩定性定理 57
3.3 非自治係統零解的穩定性 59
3.3.1 V 函數和 k 類函數 59
3.3.2 零解的穩定性 62
3.3.3 零解的不穩定性 65
3.4 全局穩定性 67
3.4.1 全局穩定的概念和判定定理 67
3.4.2 應用舉例.71
3.4.3 吸引域的估計 73
3.5 綫性係統及其擾動係統的穩定性 73
3.5.1 常係數綫性係統的穩定性 74
3.5.2 綫性係統的擾動 81
3.5.3 非自治綫性係統的穩定性 84
3.6 臨界情形下奇點的穩定性分析 87
3.6.1 中心流形.88
3.6.2 中心流形定理 92
3.6.3 臨界情況下奇點的穩定性分析舉例.95
3.7 Liapunov 函數的構造 102
3.7.1 Liapunov 函數的存在性 102
3.7.2 常係數綫性係統的巴爾巴欣公式 104
3.7.3 二次型方法的推廣 108
3.7.4 綫性類比法 110
3.7.5 能量函數法 112
3.7.6 分離變量法 113
3.7.7 變梯度法 114
3.8 判定穩定性時的比較方法 116
3.8.1 與數量方程的比較 116
3.8.2 與嚮量方程的比較 120
習題 3122
第 4 章 平麵係統的奇點 125
4.1 初等奇點.125
4.1.1 綫性係統的孤立奇點 125
4.1.2 非綫性係統的雙麯奇點 135
4.2 中心與焦點的判定 140
4.2.1 非雙麯初等奇點的類型與中心的判定定理 140
4.2.2 細焦點及其判定法 147
4.3 高階奇點.157
4.3.1 沿不變直綫方嚮的拉伸變換158
4.3.2 通過極坐標變換的吹脹' 技巧 160
4.3.3 沿 x 與 y 方嚮的吹脹'165
4.3.4 非齊次 吹脹' 169
4.4 鏇轉數與指數 171
4.4.1 鏇轉數及其基本性質 171
4.4.2 奇點的指數 173
習題 4177
第 5 章 極限環.179
5.1 基本概念與極限環的不存在性 179
5.1.1 基本概念 179
5.1.2 極限環不存在性的判定法 181
5.2 極限環的存在性.187
5.3 後繼函數與極限環的穩定性.198
5.3.1 Poinear.e 映射與後繼函數 198
5.3.2 麯綫坐標與極限環的穩定性200
5.4 極限環的唯一性.204
習題 5211
第 6 章 無窮遠奇點與全局結構 212
6.1 無窮遠奇點 212
6.1.1 Poincar.e 球麵與 Poincar.e 變換 212
6.1.2 無窮遠奇點與 Poincar.e 圓盤214
6.2 軌綫的全局結構分析舉例 224
習題 6228
第 7 章 分支理論 229
7.1 一個例子.229
7.2 結構穩定與分支現象230
7.2.1 結構穩定的定義 230
7.2.2 結構穩定的等價描述 232
7.2.3 結構不穩定:分支現象 233
7.3 奇點分支.234
7.3.1 一維係統的奇點分支 234
7.3.2 二維或更高維係統的奇點分支.238
7.3.3 給定擾動參數的奇點分支問題.242
7.4 Hopf 分支 243
7.4.1 平麵係統的 Hopf 分支 244
7.4.2 利用特徵根的共振性求正規形.255
7.4.3 三維或更高維係統的 Hopf 分支 257
7.5 閉軌分支.259
7.5.1 平麵係統的閉軌分支 259
7.5.2 三維或更高維係統的閉軌分支.263
7.6 奇異閉軌分支 268
7.6.1 平麵係統的同宿分支 269
7.6.2 鏇轉嚮量場 270
7.6.3 平麵係統同宿分支的例子 272
7.6.4 關於異宿分支和高維係統奇異閉軌分支的介紹 275
7.7 Poincar.e 分支||從平麵閉軌族分支極限環 276
7.7.1 平麵 Hamilton 係統的擾動問題 276
7.7.2 高階 Melnikov 函數.284
7.7.3 平麵可積係統的擾動問題 286
7.7.4 弱化的希爾伯特第 16 問題 287
7.8 從高維係統的閉軌族産生周期解的分支問題 289
7.9 Bogdanov-Takens 分支 296
7.9.1 利用變換求正規形 296
7.9.2 餘維 2 的 B-T 分支:普適開摺的推導 298
7.9.3 餘維 2 的 B-T 分支:分支圖與軌綫拓撲分類 302
習題 7303
第 8 章 常微分方程的應用舉例 308
8.1 一個三種群相互作用的 Volterra 模型研究 308
8.1.1 正平衡解的穩定性 308
8.1.2 模型平麵解的存在性及其漸近性態 311
8.1.3 一個 Volterra 模型的 Hopf 分支 314
8.2 傳染病模型 317
8.2.1 假設和記號 317
8.2.2 SIS 模型 317
8.2.3 SIR 模型 319
8.2.4 SEIR 模型 321
8.3 一個總人口變化的 SEIR 模型的全局性態分析 323
8.3.1 模型及其平衡解 323
8.3.2 無病平衡點的穩定性 325 8.3.3 地方病平衡點的穩定性 327
8.3.4 地方病平衡點的全局穩定性329
8.4 三分子反應模型.332
8.4.1 模型及其奇點分析 332
8.4.2 極限環的存在唯一性 334
8.5 一個具有非綫性傳染率的 SI 模型的穩定性與分支 336
8.5.1 具有非綫性傳染率的 SI 模型 336
8.5.2 平衡點的穩定性 338
8.5.3 模型 (8.5.3) 的 Bogdanov-Takens 分支 341
8.6 一個具有飽和恢復率的季節性傳染病模型 348
8.6.1 模型及其基本再生數 348
8.6.2 兩個正周期解的存在性 349
8.6.3 周期解的穩定性 354
習題 8 359
參考文獻362
作者介紹
文摘
序言
常微分方程定性與穩定性方法(第二版) 馬知恩,周義倉,李承治 科學齣版社 下載 mobi pdf epub txt 電子書 格式 2024
常微分方程定性與穩定性方法(第二版) 馬知恩,周義倉,李承治 科學齣版社 下載 mobi epub pdf 電子書評分
評分
評分
評分
評分
評分
評分
評分
常微分方程定性與穩定性方法(第二版) 馬知恩,周義倉,李承治 科學齣版社 mobi epub pdf txt 電子書 格式下載 2024