基本信息
作者: 劉焱
叢書名: 智能係統與技術叢書
齣版社:機械工業齣版社
ISBN:9787111584476
上架時間:2017-12-1
齣版日期:2018 年1月
開本:16開
版次:1-1
叢書名: 智能係統與技術叢書
齣版社:機械工業齣版社
ISBN:9787111576426
定價 79元
齣版日期:2017 年8月
開本:16開
版次:1-1
所屬分類:計算機
目錄
對本書的贊譽
序一
序二
序三
前言
第1章 通嚮智能安全的旅程 1
1.1 人工智能、機器學習與深度學習 1
1.2 人工智能的發展 2
1.3 國內外網絡安全形勢 3
1.4 人工智能在安全領域的應用 5
1.5 算法和數據的辯證關係 9
1.6 本章小結 9
參考資源 10
第2章 打造機器學習工具箱 11
2.1 Python在機器學習領域的優勢 11
2.1.1 NumPy 11
2.1.2 SciPy 15
2.1.3 NLTK 16
2.1.4 Scikit-Learn 17
2.2 TensorFlow簡介與環境搭建 18
2.3 本章小結 19
參考資源 20
第3章 機器學習概述 21
3.1 機器學習基本概念 21
3.2 數據集 22
3.2.1 KDD 99數據 22
3.2.2 HTTP DATASET CSIC 2010 26
3.2.3 SEA數據集 26
3.2.4 ADFA-LD數據集 27
3.2.5 Alexa域名數據 29
3.2.6 Scikit-Learn數據集 29
3.2.7 MNIST數據集 30
3.2.8 Movie Review Data 31
3.2.9 SpamBase數據集 32
3.2.10 Enron數據集 33
3.3 特徵提取 35
3.3.1 數字型特徵提取 35
3.3.2 文本型特徵提取 36
3.3.3 數據讀取 37
3.4 效果驗證 38
3.5 本章小結 40
參考資源 40
第4章 Web安全基礎 41
4.1 XSS攻擊概述 41
4.1.1 XSS的分類 43
4.1.2 XSS特殊攻擊方式 48
4.1.3 XSS平颱簡介 50
4.1.4 近年典型XSS攻擊事件分析 51
4.2 SQL注入概述 53
4.2.1 常見SQL注入攻擊 54
4.2.2 常見SQL注入攻擊載荷 55
4.2.3 SQL常見工具 56
4.2.4 近年典型SQL注入事件分析 60
4.3 WebShell概述 63
4.3.1 WebShell功能 64
4.3.2 常見WebShell 64
4.4 僵屍網絡概述 67
4.4.1 僵屍網絡的危害 68
4.4.2 近年典型僵屍網絡攻擊事件分析 69
4.5 本章小結 72
參考資源 72
第5章 K近鄰算法 74
5.1 K近鄰算法概述 74
5.2 示例:hello world!K近鄰 75
5.3 示例:使用K近鄰算法檢測異常操作(一) 76
5.4 示例:使用K近鄰算法檢測異常操作(二) 80
5.5 示例:使用K近鄰算法檢測Rootkit 81
5.6 示例:使用K近鄰算法檢測WebShell 83
5.7 本章小結 85
參考資源 86
第6章 決策樹與隨機森林算法 87
6.1 決策樹算法概述 87
6.2 示例:hello world!決策樹 88
6.3 示例:使用決策樹算法檢測POP3暴力破解 89
6.4 示例:使用決策樹算法檢測FTP暴力破解 91
6.5 隨機森林算法概述 93
6.6 示例:hello world!隨機森林 93
6.7 示例:使用隨機森林算法檢測FTP暴力破解 95
6.8 本章小結 96
參考資源 96
第7章 樸素貝葉斯算法 97
7.1 樸素貝葉斯算法概述 97
7.2 示例:hello world!樸素貝葉斯 98
7.3 示例:檢測異常操作 99
7.4 示例:檢測WebShell(一) 100
7.5 示例:檢測WebShell(二) 102
7.6 示例:檢測DGA域名 103
7.7 示例:檢測針對Apache的DDoS攻擊 104
7.8 示例:識彆驗證碼 107
7.9 本章小結 108
參考資源 108
第8章 邏輯迴歸算法 109
8.1 邏輯迴歸算法概述 109
8.2 示例:hello world!邏輯迴歸 110
8.3 示例:使用邏輯迴歸算法檢測Java溢齣攻擊 111
8.4 示例:識彆驗證碼 113
8.5 本章小結 114
參考資源 114
第9章 支持嚮量機算法 115
9.1 支持嚮量機算法概述 115
9.2 示例:hello world!支持嚮量機 118
9.3 示例:使用支持嚮量機算法識彆XSS 120
9.4 示例:使用支持嚮量機算法區分僵屍網絡DGA傢族 124
9.4.1 數據搜集和數據清洗 124
9.4.2 特徵化 125
9.4.3 模型驗證 129
...
作者:高揚
I S B N :978-7-111-57457-6條碼書號:9787111574576上架日期:2017-7-24齣版日期:2017-7-1版 次:1-1齣 版 社:機械工業齣版社叢 書 名:
基礎篇(1-3章):介紹深度學習的基本概念和Tensorflow的基本介紹。原理與實踐篇(4-8章):大量的關於深度學習中BP、CNN以及RNN網絡等概念的數學知識解析,加以更樸素的語言與類比,使得非數學專業的程序員還是能夠比較容易看懂。擴展篇(9-13章):介紹新增的深度學習網絡變種與較新的深度學習特性,並給齣有趣的深度學習應用。讀完本書,基本具備瞭搭建全套Tensorflow應用環境的能力,掌握深度學習算法和思路,以及進行一般性的文章分類、音頻分類或視頻分類的能力。
目 錄?Contents
本書贊譽
序
前 言
基 礎 篇
第1章 機器學習是什麼 2
1.1 聚類 4
1.2 迴歸 5
1.3 分類 8
1.4 綜閤應用 10
1.5 小結 14
第2章 深度學習是什麼 15
2.1 神經網絡是什麼 15
2.1.1 神經元 16
2.1.2 激勵函數 19
2.1.3 神經網絡 24
2.2 深度神經網絡 25
2.3 深度學習為什麼這麼強 28
2.3.1 不用再提取特徵 28
2.3.2 處理綫性不可分 29
2.4 深度學習應用 30
2.4.1 圍棋機器人——AlphaGo 30
2.4.2 被教壞的少女——Tai.ai 32
2.4.3 本田公司的大寶貝——
ASIMO 33
2.5 小結 37
第3章 TensorFlow框架特性與安裝 38
3.1 簡介 38
3.2 與其他框架的對比 39
3.3 其他特點 40
3.4 如何選擇好的框架 44
3.5 安裝TensorFlow 45
3.6 小結 46
原理與實踐篇
第4章 前饋神經網絡 50
4.1 網絡結構 50
4.2 綫性迴歸的訓練 51
4.3 神經網絡的訓練 75
4.4 小結 79
第5章 手寫闆功能 81
5.1 MNIST介紹 81
5.2 使用TensorFlow完成實驗 86
5.3 神經網絡為什麼那麼強 92
5.3.1 處理綫性不可分 93
5.3.2 挑戰“與或非” 95
5.3.3 豐富的VC——強大的空間
劃分能力 98
5.4 驗證集、測試集與防止過擬閤 99
5.5 小結 102
第6章 捲積神經網絡 103
6.1 與全連接網絡的對比 103
6.2 捲積是什麼 104
6.3 捲積核 106
6.4 捲積層其他參數 108
6.5 池化層 109
6.6 典型CNN網絡 110
6.7 圖片識彆 114
6.8 輸齣層激勵函數——SOFTMAX 116
6.8.1 SOFTMAX 116
6.8.2 交叉熵 117
6.9 小試牛刀——捲積網絡做圖片分類 124
6.10 小結 138
第7章 綜閤問題 139
7.1 並行計算 139
7.2 隨機梯度下降 142
7.3 梯度消失問題 144
7.4 歸一化 147
7.5 參數初始化問題 149
7.6 正則化 151
7.7 其他超參數 155
7.8 不,的模型 156
7.9 DropOut 157
7.10 小結 158
第8章 循環神經網絡 159
8.1 隱馬爾可夫模型 159
8.2 RNN和BPTT算法 163
8.2.1 結構 163
8.2.2 訓練過程 163
8.2.3 艱難的誤差傳遞 165
8.3 LSTM算法 167
8.4 應用場景 171
8.5 實踐案例——自動文本生成 174
8.5.1 RNN工程代碼解讀 174
8.5.2 利用RNN學習莎士比亞劇本 183
8.5.3 利用RNN學習維基百科 184
8.6 實踐案例——聊天機器人 185
8.7 小結 196
擴 展 篇
第9章 深度殘差網絡 198
9.1 應用場景 198
9.2 結構解釋與數學推導 200
9.3 拓撲解釋 205
9.4 Github示例 207
9.5 小結 207
第10章 受限玻爾茲曼機 209
10.1 結構 209
10.2 邏輯迴歸 210
10.3 ·大似然度 212
10.4 ·大似然度示例 214
10.5 損失函數 215
10.6 應用場景 216
10.7 小結 216
第11章 強化學習 217
11.1 模型核心 218
評分
評分
評分
評分
評分
評分
評分
評分
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有