书名:深度学习之TensorFlow:入门、原理与进阶实战
版 次:1
页 数:508
开 本:16开
印 次:1
包 装:平装
定价:99元
ISBN:9787111590057
本书针对TensorFlow 1.0以上版本编写,采用“理论+实践”的形式编写,通过大量的实例(共96个),全面而深入地讲解“深度学习神经网络原理”和“Tensorflow使用方法”两方面。书中的实例具有很强的实用,如对图片分类、制作一个简单的聊天机器人、进行图像识别等。书中的每章都配有一段教学视频,视频和图书具有一样的内容和结构,能帮助读者快速而全面地了解本章的内容。本书还免费提供了所有案例的源代码及数据样本,这些代码和样本不仅方便了读者学习,而且也能为以后的工作提供便利。
全书共分为3篇:1篇“深度学习与TensorFlow基础”,包括快速了解人工智能与TensorFlow、搭建开发环境、TensorFlow基本开发步骤、TensorFlow编程基础、一个识别图中模糊的数字的案例;2篇“深度学习基础——神经网络”介绍了神经网络的基础模型,包括单个神经元、多层神经网络、卷积神经网络、循环神经网络、自编码网络;3篇“神经网络进阶”,是对基础网络模型的灵活运用与自由组合,是对前面知识的综合及拔高,包括深度神经网络、对抗神经网络。
本书结构清晰、案例丰富、通俗易懂、实用性强。特别适合TensorFlow深度学习的初学者和进阶读者作为自学教程阅读。另外,本书也适合社会培训学校作为培训教材使用,还适合大中专院校的相关专业作为教学参考书。
前言
1篇 深度学习与TensorFlow基础
1章 快速了解人工智能与TensorFlow 2
1.1 什么是深度学习 2
1.2 TensorFlow是做什么的 3
1.3 TensorFlow的特点 4
1.4 其他深度学习框架特点及介绍 5
1.5 如何通过本书学好深度学习 6
1.5.1 深度学习怎么学 6
1.5.2 如何学习本书 7
2章 搭建开发环境 8
2.1 下载及安装Anaconda开发工具 8
2.2 在Windows平台下载及安装TensorFlow 11
2.3 GPU版本的安装方法 12
2.3.1 安装CUDA软件包 12
2.3.2 安装cuDNN库 13
2.3.3 测试显卡 14
2.4 熟悉Anaconda 3开发工具 15
2.4.1 快速了解Spyder 16
2.4.2 快速了解Jupyter Notebook 18
3章 TensorFlow基本开发步骤——以逻辑回归拟合二维数据为例 19
3.1 实例1:从一组看似混乱的数据中找出y≈2x的规律 19
3.1.1 准备数据 20
3.1.2 搭建模型 21
3.1.3 迭代训练模型 23
3.1.4 使用模型 25
3.2 模型是如何训练出来的 25
3.2.1 模型里的内容及意义 25
3.2.2 模型内部的数据流向 26
3.3 了解TensorFlow开发的基本步骤 27
3.3.1 定义输入节点的方法 27
3.3.2 实例2:通过字典类型定义输入节点 28
3.3.3 实例3:直接定义输入节点 28
3.3.4 定义“学习参数”的变量 29
3.3.5 实例4:通过字典类型定义“学习参数” 29
3.3.6 定义“运算” 29
3.3.7 优化函数,优化目标 30
3.3.8 初始化所有变量 30
3.3.9 迭代更新参数到**解 31
3.3.10 测试模型 31
3.3.11 使用模型 31
4章 TensorFlow编程基础 32
4.1 编程模型 32
4.1.1 了解模型的运行机制 33
4.1.2 实例5:编写hello world程序演示session的使用 34
4.1.3 实例6:演示with session的使用 35
4.1.4 实例7:演示注入机制 35
4.1.5 建立session的其他方法 36
4.1.6 实例8:使用注入机制获取节点 36
4.1.7 指定GPU运算 37
4.1.8 设置GPU使用资源 37
4.1.9 保存和载入模型的方法介绍 38
4.1.10 实例9:保存/载入线性回归模型 38
4.1.11 实例10:分析模型内容,演示模型的其他保存方法 40
4.1.12 检查点(Checkpoint) 41
4.1.13 实例11:为模型添加保存检查点 41
4.1.14 实例12:更简便地保存检查点 44
4.1.15 模型操作常用函数总结 45
4.1.16 TensorBoard可视化介绍 45
4.1.17 实例13:线性回归的TensorBoard可视化 46
4.2 TensorFlow基础类型定义及操作函数介绍 48
4.2.1 张量及操作 49
4.2.2 算术运算函数 55
4.2.3 矩阵相关的运算 56
4.2.4 复数操作函数 58
4.2.5 规约计算 59
4.2.6 分割 60
4.2.7 序列比较与索引提取 61
4.2.8 错误类 62
4.3 共享变量 62
4.3.1 共享变量用途 62
4.3.2 使用get-variable获取变量 63
4.3.3 实例14:演示get_variable和Variable的区别 63
4.3.4 实例15:在特定的作用域下获取变量 65
4.3.5 实例16:共享变量功能的实现 66
4.3.6 实例17:初始化共享变量的作用域 67
4.3.7 实例18:演示作用域与操作符的受限范围 68
4.4 实例19:图的基本操作 70
4.4.1 建立图 70
4.4.2 获取张量 71
4.4.3 获取节点操作 72
4.4.4 获取元素列表 73
4.4.5 获取对象 73
4.4.6 练习题 74
4.5 配置分布式TensorFlow 74
4.5.1 分布式TensorFlow的角色及原理 74
4.5.2 分布部署TensorFlow的具体方法 75
4.5.3 实例20:使用TensorFlow实现分布式部署训练 75
4.6 动态图(Eager) 81
4.7 数据集(tf.data) 82
5章 识别图中模糊的手写数字(实例21) 83
5.1 导入图片数据集 84
5.1.1 MNIST数据集介绍 84
5.1.2 下载并安装MNIST数据集 85
帮朋友买的,好像还挺难买,专业性强
评分很好的一本书,内容全面,实用性强,全是干货;想入门和提高的,应该买这本书。
评分正好要对这个领悟展开学习,这本适合入门级别的专业书正好做来参考,很有用的书。
评分对其中的进阶实战很感兴趣,冲着这个去买的,挺不错的。
评分快递赶快,一天就到了,拿到迫不及待的打开,书确实不错,纸张也挺好的,好厚一本,良心之作???,写得也很实用,接下来就是努力看完,肯定能学到很???
评分对其中的进阶实战很感兴趣,冲着这个去买的,挺不错的。
评分这是一本读过深度学习这方面书中干货最多,最实用的一本书了,值得大家拥有!
评分刚收到书,大概翻了一下,各章节写得很详细,插入了很多案例,挺实用。
评分我是看到作者发布的恶意域名检测文章找到这本书的,年前就开始关注了。终于等到了,这才是真正能够让人学得懂的深度学习书籍。现在项目正需要这方面的知识。深度学习的人才又太贵。先买了一本给公司里的人看看。反响很不错。准备再买几本,人手一本,开始公司内部的技术转型之旅。^_^
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有