| 书名: | 纯数学教程(英文版·第10版)|17149 |
| 图书定价: | 65元 |
| 图书作者: | (英)G.H.Hardy |
| 出版社: | 机械工业出版社 |
| 出版日期: | 2004/2/1 0:00:00 |
| ISBN号: | 711113785X |
| 开本: | 16开 |
| 页数: | 509 |
| 版次: | 10-1 |
| 作者简介 |
| 6. H.Hardy英国数学家(1877—1947)。1896年考入剑桥三一学院,并子1900年在剑桥获得史密斯奖。之后,在英国牛津大学。剑桥大学任教,是20世纪初著名的数学分析家之一。 他的贡献包括数论中的丢番图逼近、堆垒数论、素数分布理论与黎曼函数,调和分析中的三角级数理论。发散级数求和与陶伯定理。不等式、积分变换与积分方程等方面,对分析学的发展有深刻的影响。以他的名字命名的Hp空间(哈代空间),至今仍是数学研究中十分活跃的领域。 除本书外,他还著有《不等式》、《发散级数》等10多部书籍与300多篇文章。 |
| 内容简介 |
| 自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。 在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。 |
| 目录 |
CONTENTS (Entries in small print at the end of the contents of each chapter refer to subjects discussed incidentally in the examples) CHAPTER I REAL VARIABLES SECT. 1-2. Rational numbers 3-7. Irrational numbers 8. Real numbers 9. Relations of magnitude between real numbers 10-11. Algebraical operations with real numbers 12. The number 2 13-14. Quadratic surds 15. The continum 16. The continuous real variable 17. Sections of the real numbers. Dedekind's theorem 18. Points of accumulation 19. Weierstrass's theorem . Miscellaneous examples CHAPTER II FUNCTIONS OF REAL VARIABLES 20. The idea of a function 21. The graphical representation of functions. Coordinates 22. Polar coordinates 23. Polynomias 24-25. Rational functions 26-27. Aigebraical functious 28-29. Transcendental functions 30. Graphical solution of equations 31. Functions of two variables and their graphical repre- sentation 32. Curves in a plane 33. Loci in space Miscellaneous examples CHAPTER III COMPLEX NUMBERS SECT. 34-38. Displacements 39-42. Complex numbers 43. The quadratic equation with real coefficients 44. Argand's diagram 45. De Moivre's theorem 46. Rational functions of a complex variable 47-49. Roots of complex numbers Miscellaneous examples CHAPTER IV LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE 50. Functions of a positive integral variable 51. Interpolation 52. Finite and infinite classes 53-57. Properties possessed by a function of n for large values of n 58-61. Definition of a limit and other definitions 62. Oscillating functions 63-68. General theorems concerning limits 69-70. Steadily increasing or decreasing functions 71. Alternative proof of Weierstrass's theorem 72. The limit of xn 73. The limit of(1+ 74. Some algebraical lemmas 75. The limit of n(nX-1) 76-77. Infinite series 78. The infinite geometrical series 79. The representation of functions of a continuous real variable by means of limits 80. The bounds of a bounded aggregate 81. The bounds of a bounded function 82. The limits of indetermination of a bounded function 83-84. The general principle of convergence 85-86. Limits of complex functions and series of complex terms 87-88. Applications to zn and the geometrical series 89. The symbols O, o, Miscellaneous examples CHAPTER V LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS AND DISCONTINUOUS FUNCTIONS 90-92. Limits as x-- or x--- 93-97. Limits as z-, a 98. The symbols O, o,~: orders of smallness and greatness 99-100. Continuous functions of a real variable 101-105. Properties of continuous functions. Bounded functions. The oscillation of a function in an interval 106-107. Sets of intervals on a line. The Heine-Borel theorem 108. Continuous functions of several variables 109-110. Implicit and inverse functions Miscellaneous examples CHAPTER VI DERIVATIVES AND INTEGRALS 111-113. Derivatives 114. General rules for differentiation 115. Derivatives of complex functions 116. The notation of the differential calculus 117. Differentiation of polynomials 118. Differentiation of rational functions 119. Differentiation of algebraical functions 120. Differentiation of transcendental functions 121. Repeated differentiation 122. General theorems concerning derivatives, Rolle's theorem 123-125. Maxima and minima 126-127. The mean value theorem 128. Cauchy's mean value theorem SECT. 129. A theorem of Darboux 130-131. Integration. The logarithmic function 132. Integration of polynomials 133-134. Integration of rational functions 135-142. Integration of algebraical functions. Integration by rationalisation. Integration by parts 143-147. Integration of transcendental functions 148. Areas of plane curves 149. Lengths of plane curves Miscellaneous examples CHAPTER VII ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS 150-151. Taylor's theorem 152. Taylor's series 153. Applications of Taylor's theorem to maxima and minima 154. The calculation of certain limits 155. The contact of plane curves 156-158. Differentiation of functions of several variables 159. The mean value theorem for functions of two variables 160. Differentials 161-162. Definite integrals 163. The circular functions 164. Calculation of the definite integral as the limit of a sum 165. General properties of the definite integral 166. Integration by parts and by substitution 167. Alternative proof of Taylor's theorem 168. Application to the binomial series 169. Approximate formulae for definite integrals. Simpson's rule 170. Integrals of complex functions Miscellaneous examples CHAPTER VIII THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS SECT. PAGE 171-174. Series of positive terms. Cauchy's and d'Alembert's tests of convergence 175. Ratio tests 176. Dirichlet's theorem 177. Multiplication of series of positive terms 178-180. Further tests for convergence. Abel's theorem. Mac- laurin's integral test 181. The series n-s 182. Cauchy's condensation test 183. Further ratio tests 184-189. Infinite integrals 190. Series of positive and negative terms 191-192. Absolutely convergent series 193-194. Conditionally convergent series 195. Alternating series 196. Abel's and Dirichlet's tests of convergence 197. Series of complex terms 198-201. Power series 202. Multiplication of series 203. Absolutely and conditionally convergent infinite integrals Miscellaneous examples CHAPTER IX THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS OF A REAL VARIABLE 204-205. The logarithmic function 206. The functional equation satisfied by log x 207-209. The behaviour of log x as x tends to infinity or to zero 210. The logarithmic scale of infinity 211. The number e 212-213. The exponential function 214. The general power ax 215. The exponential limit 216. The logarithmic limit SECT. 217. Common logarithms 218. Logarithmic tests of convergence 219. The exponential series 220. The logarithmic series 221. The series for arc tan x 222. The binomial series 223. Alternative development of the theory 224-226. The analytical theory of the circular functions Miscellaneous examples CHAPTER X THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS 227-228. Functions of a complex variable 229. Curvilinear integrals 230. Definition of the logarithmic function 231. The values of the logarithmic function 232-234. The exponential function 235-236. The general power a 237-240. The trigonometrical and hyperbolic functions 241. The connection between the logarithmic and inverse trigonometrical functions 242. The exponential series 243. The series for cos z and sin z 244-245. The logarithmic series 246. The exponential limit 247. The binomial series Miscellaneous examples The functional equation satisfied by Log z, 454. The function e, 460. Logarithms to any base, 461. The inverse cosine, sine, and tangent of a complex number, 464. Trigonometrical series, 470, 472-474, 484, 485. Roots of transcendental equations, 479, 480. Transformations, 480-483. Stereographic projection, 482. Mercator's projection, 482. Level curves, 484-485. Definite integrals, 486. APPENDIX I. The proof that every equation has a root APPENDIX II. A note on double limit problems APPENDIX III. The infinite in analysis and geometry APPENDIX IV. The infinite in analysis and geometry INDEX |
这本书的习题设计绝对是教科书级别的“磨刀石”,而且这种“磨”的方式非常高明。它不是那种简单重复计算的机械练习,而是设计了一系列富有挑战性和启发性的问题,很多题目本身就蕴含着对某个理论更深层次的理解或应用技巧。我做了一组关于群论的练习题,发现它们不仅考察了定义层面的掌握,更要求将不同定理灵活组合起来解决一个稍微复杂化的问题。很多题目后面还附带了简要的解题思路提示(但不是直接给出答案),这极大地激发了读者独立思考的欲望。对于希望真正将理论内化为自身能力的人来说,这些习题的价值甚至超过了理论部分的讲解本身,它们是检验学习成果、强化思维定势的最佳途径。
评分作为一本工具书,它的内容覆盖面广度令人称奇,几乎涵盖了现代数学体系中各个主要分支的核心概念和基础理论。我翻阅了其中关于拓扑学和泛函分析的章节,发现它在介绍基本定理时,不仅给出了严格的证明,还辅以了大量直观的几何解释或实际应用背景,这种理论与实践相结合的处理方式,极大地拓宽了读者的视野。更棒的是,它似乎总能预料到读者在哪个地方可能会产生疑问,并在关键节点设置了“深入探讨”或者“常见误区”这样的提示框,非常贴心。这种对读者学习路径的细致考量,让它不仅仅是一本参考手册,更像是一位经验丰富的私人导师在身边指导。对于需要进行跨领域知识整合的科研工作者来说,这本书的索引和交叉引用设计也做得非常出色,查找效率极高。
评分这本书的行文风格简直是教科书级别的典范,它不像某些教材那样堆砌晦涩难懂的术语,而是用一种极其清晰、逻辑严密的叙述方式展开论述。作者在构建知识体系时,显然是下了大功夫的,每一个章节之间的过渡都衔接得天衣无缝,让你感觉每一步的推导都是水到渠成的。我尤其欣赏它在处理复杂概念时所展现出的耐心,总能找到那个最巧妙的切入点,将原本看似高不可攀的理论拆解得井井有条。读起来有一种被“引导”的感觉,而不是被“灌输”,这对于需要深度理解的学科来说至关重要。即便是初次接触某些领域的读者,也能通过这种循序渐进的讲解方式,逐步建立起扎实的认知框架,而不是被一堆公式和定义搞得晕头转向。这种叙事上的掌控力,体现了作者深厚的教学功底和对学科脉络的精准把握。
评分这本书的包装简直让人眼前一亮,拿到手的时候就感觉沉甸甸的,绝对是那种“有料”的书籍。内页的纸张质感相当不错,即使是长时间阅读也不会觉得刺眼,而且印刷的清晰度没得说,字体排版也显得非常专业和考究。我特别喜欢它封面设计的那种简约大气的感觉,一看就知道不是那种花里胡哨的入门读物,而是真正沉下心来做学问的工具书。书脊的装帧也非常牢固,感觉可以经受得住反复翻阅的考验,放在书架上也是一道亮丽的风景线,那种低调的奢华感,让人爱不释手。打开书本时,首先映入眼帘的是那种特有的油墨香混合着纸张的芬芳,让人立刻进入到学习的状态。对于像我这样对书籍的物理特性有较高要求的读者来说,这本书的制作工艺绝对是超出了预期,每一个细节都透露着出版方对知识载体的尊重。
评分从整体的阅读体验来看,这本书的价值远远超出了其标定的价格,它提供了一种沉浸式的、高质量的学术体验。我注意到在涉及一些历史背景或重要人物的介绍时,作者的处理非常得体,既不会喧宾夺主,又能让读者感受到这些理论是如何在历史长河中一步步发展起来的,为冰冷的公式增添了一丝人文色彩。这种对知识的敬畏感和对历史的尊重,使得阅读过程变得更加有意义。这本书的排版和留白处理也做得极佳,保证了长时间阅读的舒适度,没有那种被密密麻麻文字压迫的感觉。总而言之,这是一本我可以毫不犹豫推荐给任何严肃学习者,并且相信它能成为其书架上使用频率最高的参考资料之一的经典著作。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有