发表于2025-01-20
【拍前必读】:
本店销售的书籍品相可能因为存放时间长短关系会有成色不等,请放心选购。
付款后,不缺货的情况下,48小时内发货,如有缺货的情况下,我们会及时在聊天窗口给您留言告知。
发货地北京,一般情况下发货后同城次日可以到达,省外具体以快递公司运输为准。
望每位读者在收货的时候要验货,有什么意外可以拒签,这是对您们权益的保护。
注意:节假日全体放假,请自助下单;如需帮助请及时与我们联系。祝您购物愉快!商家热线:010-57272736
基本信息
书名:量子机器学习中数据挖掘的量子计算方法:英文
定价:98.00元
作者:维特克 (Wittek P.)
出版社:哈尔滨工业大学出版社
出版日期:2016-01-01
ISBN:9787560357591
字数:
页码:
版次:1
装帧:平装-胶订
开本:16开
商品重量:0.4kg
编辑推荐
内容提要
目录
Preface
Notations
PartOne FundamentaIConcepts
1 Introduction
1.1 Learning Theory and Data Mining
1.2 Why Quantum Computers?
1.3 A Heterogeneous Model
1.4 An Overview of Quantum Machine Learning Algorithms
1.5 Quantum—Like Learning on Classical Computers
2 Machine Learning
2.1 Data—DrivenModels
2.2 FeatureSpace
2.3 Supervised and Unsupervised Learning
2.4 GeneralizationPerformance
2.5 ModeIComplexity
2.6 Ensembles
2.7 Data Dependencies and ComputationalComplexity
3 Quantum Mechanics
3.1 States and Superposition
3.2 Density Matrix Representation and Mixed States
3.3 Composite Systems and Entanglement
3.4 Evolution
3.5 Measurement
3.6 UncertaintyRelations
3.7 Tunneling
3.8 Adiabatic Theorem
3.9 No—CloningTheorem
4 Quantum Computing
4.1 Qubits and the Bloch Sphere
4.2 QuantumCircuits
4.3 Adiabatic Quantum Computing
4.4 QuantumParallelism
4.5 Grover's Algorithm
4.6 ComplexityClasses
4.7 QuantumInformationTheory
Part Two ClassicalLearning Algorithms
5 Unsupervised Learning
5.1 Principal Component Analysis
5.2 ManifoldEmbedding
5.3 K—Means and K—Medians Clustering
5.4 HierarchicalClustering
5.5 Density—BasedClustering
6 Pattern Recogrution and Neural Networks
6.1 ThePerceptron
6.2 HopfieldNetworks
6.3 FeedforwardNetworks
6.4 DeepLearning
6.5 ComputationalComplexity
7 Supervised Learning and Support Vector Machines
7.1 K—NearestNeighbors
7.20ptimal Margin Classifiers
7.3 SoftMargins
7.4 Nonlinearity and KemelFunctions
7.5 Least—SquaresFormulation
7.6 Generalization Performance
7.7 Multiclass Problems
7.8 Loss Functions
7.9 ComputationalComplexity
8 Regression Analysis
8.1 Linear Least Squares
8.2 NonlinearRegression
8.3 NonparametricRegression
8.4 ComputationalComplexity
9 Boosting
9.1 WeakClassifiers
9.2 AdaBoost
9.3 A Family of Convex Boosters
9.4 Nonconvex Loss Functions
Part Three Quantum Computing and Machine Learning
10 Clustering Structure and Quantum Computing
10.1 Quantum Random Access Memory
10.2 Calculating Dot Products
10.3 Quantum Principal Component Analysis
10.4 Toward Quantum Manifold Embedding
10.5 QuantumK—Means
10.6 QuantumK—Medians
10.7 Quantum Hierarchical Clustering
10.8 ComputationalComplexity
11 Quantum Pattern Recognition
11.1 Quantum Associative Memory
11.2 The Quantum Perceptron
11.3 Quantum Neural Networks
11.4 PhysicaIRealizations
11.5 ComputationalComplexity
12 QuantumClassification
12.1 Nearest Neighbors
12.2 Support Vector Machines with Grover's Search
12.3 Support Vector Machines with Exponential Speedup
12.4 ComputationalComplexity
13 Quantum Process Tomography and Regression
13.1 Channel—State Duality
13.2 Quantum Process Tomography
13.3 Groups, Compact Lie Groups, and the Unitary Group
13.4 Representation Theory
13.5 Parallel Application and Storage of the Unitary
13.6 Optimal State for Learning
13.7 Applying the Unitary and Finding the Parameter for the Input State
14 Boosting and Adiabatic Quantum Computing
14.1 Quantum Annealing
14.2 Quadratic Unconstrained Binary Optimization
14.3 Ising Model
14.4 QBoost
14.5 Nonconvexity
14.6 Sparsity, Bit Depth, and Generalization Performance
14.7 Mapping to Hardware
14.8 ComputationalComplexity
Bibliography
作者介绍
文摘
序言
正版宏量子机器学习中数据挖掘的量子计算方法:英文9787560357591维特克 (Wit 下载 mobi pdf epub txt 电子书 格式 2025
正版宏量子机器学习中数据挖掘的量子计算方法:英文9787560357591维特克 (Wit 下载 mobi epub pdf 电子书评分
评分
评分
评分
评分
评分
评分
评分
正版宏量子机器学习中数据挖掘的量子计算方法:英文9787560357591维特克 (Wit mobi epub pdf txt 电子书 格式下载 2025