基本信息
書名:破解福爾摩斯思維習慣:印度數學
定價:29.90元
作者:於雷
齣版社:吉林科學技術齣版社有限責任公司
齣版日期:2015-07-01
ISBN:9787538485318
字數:
頁碼:300
版次:1
裝幀:平裝
開本:16開
商品重量:0.4kg
編輯推薦
※※※改變固有的思維方式
※※※數學不在是頭疼的難事
※※※輕鬆搞定平方、立方
※※※考試不再為算數浪費時間
※※※簡單的數學解題方法
內容提要
《印度數學》整理總結瞭數十種影響瞭世界幾韆年的印度秘密計算法,還包括平方、立方、平方根、立方根、方程組以及神秘奇特的手算法和驗算法等。這些方法會提高學生加減乘除的運算能力,不僅僅能夠提高學生的數學成績,更能讓他們的思維方式得到改變,讓他們從一開始就站在一個較高的起點上。對孩子來說,它可以提高對數學的興趣,愛上數學,愛上動腦;對學生來說,它可以提高計算的速度和準確性,提高學習成績;對成年人來說,它可以改變我們的思維方式,讓你在工作和生活中齣類拔萃、與眾不同。如今,我們將印度數學的秘密計算法在本書中公開。讓我們進入印度數學的奇妙世界,學習魔法般神奇的計算法吧!
目錄
章 印度加法計算法…………………………………………………… 009
1. 從左往右計算加法… ………………………………………………… 009
2. 兩位數的加法運算… ………………………………………………… 013
3. 三位數的加法運算… ………………………………………………… 016
4. 巧用補數算加法… …………………………………………………… 019
5. 用湊整法算加法… …………………………………………………… 022
6. 四位數的加法運算… ………………………………………………… 025
7. 在格子裏算加法… …………………………………………………… 028
8. 計算連續自然數的和… ……………………………………………… 032
第二章 印度減法計算法…………………………………………………… 036
1. 從左往右計算減法… ………………………………………………… 036
2. 兩位數的減法運算… ………………………………………………… 039
3. 兩位數減一位數的運算… …………………………………………… 042
4. 三位數減兩位數的運算… …………………………………………… 045
5. 三位數的減法運算… ………………………………………………… 048
6. 巧用補數算減法… …………………………………………………… 051
7. 用湊整法算減法… …………………………………………………… 054
第三章 印度乘法計算法…………………………………………………… 057
1. 十位數相同、個位相加為10的兩位數相乘… ……………………… 057
2. 個位數相同、十位相加為10的兩位數相乘… ……………………… 060
3. 十位數相同的兩位數相乘… ………………………………………… 063
4. 三位以上的數字與11相乘… ………………………………………… 067
5. 三位以上的數字與111相乘…………………………………………… 072
6. 任意數與9相乘………………………………………………………… 076
7. 任意數與99相乘… …………………………………………………… 079
8. 任意數與999相乘……………………………………………………… 082
9. 11~19之間的整數相乘… …………………………………………… 085
10. 100~110之間的整數相乘…………………………………………… 090
11. 在三角格子裏算乘法………………………………………………… 093
12. 在錶格裏算乘法……………………………………………………… 097
13. 用四邊形算兩位數的乘法…………………………………………… 101
14. 用交叉計算法算兩位數的乘法……………………………………… 104
15. 三位數與兩位數相乘………………………………………………… 108
16. 三位數乘以三位數…………………………………………………… 112
17. 四位數與兩位數相乘………………………………………………… 116
18. 四位數乘以三位數…………………………………………………… 120
19. 用錯位法算乘法……………………………………………………… 125
20. 用節點法算乘法……………………………………………………… 129
21. 用因數分解法算乘法………………………………………………… 133
22. 用模糊中間數算乘法………………………………………………… 137
23. 用較小數的平方算乘法……………………………………………… 140
24. 接近50的數字相乘…………………………………………………… 143
25. 接近100的數字相乘… ……………………………………………… 147
26. 接近200的數字相乘… ……………………………………………… 151
27. 將數字分解成容易計算的數字再進行計算………………………… 155
第四章 印度乘方計算法…………………………………………………… 158
1. 尾數為5的兩位數的平方……………………………………………… 158
2. 尾數為6的兩位數的平方……………………………………………… 161
3. 尾數為7的兩位數的平方……………………………………………… 164
4. 尾數為8的兩位數的平方……………………………………………… 167
5. 尾數為9的兩位數的平方……………………………………………… 170
6. 11~19平方的計算法… ……………………………………………… 173
7. 21~29平方的計算法… ……………………………………………… 176
8. 31~39平方的計算法… ……………………………………………… 179
9. 任意兩位數的平方… ………………………………………………… 183
10. 任意三位數的平方…………………………………………………… 186
11. 用基數法計算三位數的平方………………………………………… 189
12. 以“10”開頭的三、四位數平方的算法…………………………… 192
13. 兩位數的立方………………………………………………………… 195
14. 用基準數法算兩位數的立方………………………………………… 198
第五章 印度除法計算法及其他技巧… ………………………………… 201
1. 一個數除以9的神奇規律……………………………………………… 201
2. 如果除數以5結尾……………………………………………………… 206
3. 完全平方數的平方根… ……………………………………………… 209
4. 完全立方數的立方根… ……………………………………………… 219
5. 二元一次方程的解法… ……………………………………………… 222
6. 將循環小數轉換成分數… …………………………………………… 225
7. 印度驗算法… ………………………………………………………… 227
8. 一位數與9相乘的手算法……………………………………………… 231
9. 兩位數與9相乘的手算法……………………………………………… 234
10. 6~10之間乘法的手算法… ………………………………………… 238
11. 11~15之間乘法的手算法…………………………………………… 241
12. 16~20之間乘法的手算法…………………………………………… 243
13. 神奇的數字規律……………………………………………………… 245
答 案…………………………………………………………………………… 249
作者介紹
於雷,齣生於冰城哈爾濱,畢業於北京大學。做事認真嚴謹,喜歡讀書和思考,長期緻力於青少年益智和教育領域的研究,邏輯思維訓練專傢及暢銷書作傢。有7年圖書齣版經驗。齣版有《北大清華學生愛做的400個思維遊戲》《邏輯思維訓練500題》《青少年邏輯思維訓練係列》等一批青年益智讀物,深受廣大讀者歡迎。其中《邏輯思維訓練500題》被北京圖書大廈評為“2008年讀者喜愛的圖書(社科類)”,至今銷售已逾12萬冊。
文摘
個位數相同、十位相加為10的兩位數相乘
方法
(1)兩個乘數的個位上的數字相乘為積的後兩位數字(不足用0補)。
(2)兩個乘數的十位上的數字相乘後加上個位上的數字為百位和韆位數字。
例子
(1)計算93×13=______
3×3=9
9×1+3=12
所以93×13=1209
(2)計算27×87=______
7×7=49
2×8+7=23
所以27×87=2349
(3)計算74×34=______
4×4=16
7×3+4=25
所以74×34=2516
三位以上的數字與11相乘
方法
(1)把和11相乘的乘數寫在紙上,中間和前後留齣適當的空格。
如abcd×11,則將乘數abcd寫成:
a b c d
(2)將乘數中相鄰的兩位數字依次相加求齣的和依次寫在乘數下麵留齣的空位
上。
a b c d
a+b b+c c+d
(3)將乘數的首位數字寫在左邊,乘數的末尾數字寫在右邊。
a b c d
a a+b b+c c+d d
(4)第二排的計算結果即為乘數乘以11的結果(注意進位)。
例子一
(1)計算85436×11=______
8 5 4 3 6
8 8+5 5+4 4+3 3+6 6
8 13 9 7 9 6
進位:9 3 9 7 9 6
所以85436×11=939796
(2)計算123456×11=______
1 2 3 4 5 6
1 1+2 2+3 3+4 4+5 5+6 6
1 3 5 7 9 11 6
進位:1 3 5 8 0 1 6
所以123456×11=1358016
三位以上的數字與111相乘
方法
(1)把和111相乘的乘數寫在紙上,中間和前後留齣適當的空格。
如abc×111,積的位為a,第二位為a+b,第三位為a+b+c,第四位為b
+c,第五位為c。
(2)結果即為被乘數乘以111的結果(注意進位)。
例子
(1)計算543×111=______
積位為5,
第二位為5+4=9,
第三位為5+4+3=12,
第四位為4+3=7,
第五位為3。
即結果為5 9 12 7 3
進位後為60273
所以543×111=60273
如果被乘數為四位數abcd,那麼積的位為a,第二位為a+b,第三位為a
+b+c,第四位為b+c+d,第五位為c+d,第六位為d。
(2)計算5123×111=______
積位為5,
第二位為5+1=6,
第三位為5+1+2=8,
第四位為1+2+3=6,
第五位為2+3=5,
第六位為3。
即結果為5 6 8 6 5 3
所以5123×111=568653
接近50的數字相乘
方法
(1)設定50為基準數,計算齣兩個數與50之間的差。
(2)將被乘數與乘數竪排寫在左邊,兩個差竪排寫在右邊,中間用斜綫隔開。
(3)將上兩排數字交叉相加所得的結果寫在第三排的左邊。
(4)將兩個差相乘所得的積寫在右邊。
(5)將第3步的結果乘以基準數50,與第4步所得結果加起來,即為結果。
例子
(1)計算46×42=______
先計算齣46、42與50的差,分彆為-4,-8,因此可以寫成下列形式:
46/-4
42/-8
交叉相加,46-8或42-4,都等於38。
兩個差相乘,(-4)×(-8)=32。
因此可以寫成:
46/-4
42/-8
38/32
38×50+32=1932
所以46×42=1932
(2)計算53×42=______
先計算齣53、42與50的差,分彆為3,-8,因此可以寫成下列形式:
53/3
42/-8
交叉相加,53-8或42+3,都等於45。
兩個差相乘,3×(-8)=-24。
因此可以寫成:
53/3
42/-8
45/-24
45×50-24=2226
所以53×42=2226
(3)計算61×52=______
先計算齣61、52與50的差,分彆為11,2,因此可以寫成下列形式:
61/11
52/2
交叉相加,61+2或52+11,都等於63。
兩個差相乘,11×2=22。
因此可以寫成:
61/11
52/2
63/22
63×50+22=3172
所以61×52=3172
用因數分解法算乘法
兩位數的平方我們已經知道如何計算瞭,有瞭這個基礎,我們可以運用因數
分解法來使某些符閤特定規律的乘法轉變成簡單的方式進行計算。這個特定的規
律就是:相乘的兩個數之間的差必須為偶數。
方法
(1)找齣被乘數和乘數的中間數(隻有相乘的兩個數之差為偶數,它們纔有
中間數。)。
(2)確定被乘數和乘數與中間數之間的差。
(3)用因數分解法把乘法轉變成平方差的形式進行計算。
例子
(1)計算17×13=______
首先找齣它們的中間數為15(求中間數很簡單,即將兩個數相加除以2即可,
一般心算即可求齣)。另外,計算齣被乘數和乘數與中間數之間的差為2。
所以17×13=(15+2)×(15-2)
=152-22
=225-4
=221
所以17×13=221
(2)計算158×142=______
首先找齣它們的中間數為150。另外,計算齣被乘數和乘數與中間數之間的差
為8。
所以158×142=(150+8)×(150-8)
=1502-82
=22500-64
=22436
所以158×142=22436
(3)計算59×87=______
首先找齣它們的中間數為73。另外,計算齣被乘數和乘數與中間數之間的
差為14。
所以59×87=(73-14)×(73+14)
=732-142
=5329-196
=5133
所以59×87=5133
注意
被乘數與乘數相差越小,計算越簡單。
用模糊中間數算乘法
有的時候,中間數的選擇並不要取標準的中間數(即兩個數的平均
數),我們還可以為瞭方便計算,取湊整或者平方容易計算的數作為中間數。
方法
(1)找齣被乘數和乘數的模糊中間數a(即與相乘的兩個數的中間數接近
並且有利於計算的整數。)。
(2)分彆確定被乘數和乘數與中間數之間的差b和c。
(3)用公式(a+b)×(a+c)=a2+a×(b+c)+b×c進行計算。
例子
(1)計算47×38=______
首先找齣它們的模糊中間數為40(與中間數相近,並容易計算的整數)。
另外,分彆計算齣被乘數和乘數與中間數之間的差為7和-2。
所以47×38=(40+7)×(40-2)
=402+40×(7-2)-7×2
=1600+200-14
=1786
所以47×38=1786
(2)計算72×48=______
首先找齣它們的模糊中間數為50。另外,分彆計算齣被乘數和乘數與中間數
之間的差為22和-2。
所以72×48=(50+22)×(50-2)
=502+50×(22-2)-22×2
=2500+1000-44
=3456
所以72×48=3456
(3)計算112×98=______
首先找齣它們的模糊中間數為100。另外,分彆計算齣被乘數和乘數與中間數
之間的差為12和-2。
所以112×98=(100+12)×(100-2)
=1002+100×(12-2)-12×2
=10000+1000-24
=10976
所以112×98=10976
序言
章 印度加法計算法…………………………………………………… 009
1. 從左往右計算加法… ………………………………………………… 009
2. 兩位數的加法運算… ………………………………………………… 013
3. 三位數的加法運算… ………………………………………………… 016
4. 巧用補數算加法… …………………………………………………… 019
5. 用湊整法算加法… …………………………………………………… 022
6. 四位數的加法運算… ………………………………………………… 025
7. 在格子裏算加法… …………………………………………………… 028
8. 計算連續自然數的和… ……………………………………………… 032
第二章 印度減法計算法…………………………………………………… 036
1. 從左往右計算減法… ………………………………………………… 036
2. 兩位數的減法運算… ………………………………………………… 039
3. 兩位數減一位數的運算… …………………………………………… 042
4. 三位數減兩位數的運算… …………………………………………… 045
5. 三位數的減法運算… ………………………………………………… 048
6. 巧用補數算減法… …………………………………………………… 051
7. 用湊整法算減法… …………………………………………………… 054
第三章 印度乘法計算法…………………………………………………… 057
1. 十位數相同、個位相加為10的兩位數相乘… ……………………… 057
2. 個位數相同、十位相加為10的兩位數相乘… ……………………… 060
3. 十位數相同的兩位數相乘… ………………………………………… 063
4. 三位以上的數字與11相乘… ………………………………………… 067
5. 三位以上的數字與111相乘…………………………………………… 072
6. 任意數與9相乘………………………………………………………… 076
7. 任意數與99相乘… …………………………………………………… 079
8. 任意數與999相乘……………………………………………………… 082
9. 11~19之間的整數相乘… …………………………………………… 085
10. 100~110之間的整數相乘…………………………………………… 090
11. 在三角格子裏算乘法………………………………………………… 093
12. 在錶格裏算乘法……………………………………………………… 097
13. 用四邊形算兩位數的乘法…………………………………………… 101
14. 用交叉計算法算兩位數的乘法……………………………………… 104
15. 三位數與兩位數相乘………………………………………………… 108
16. 三位數乘以三位數…………………………………………………… 112
17. 四位數與兩位數相乘………………………………………………… 116
18. 四位數乘以三位數…………………………………………………… 120
19. 用錯位法算乘法……………………………………………………… 125
20. 用節點法算乘法……………………………………………………… 129
21. 用因數分解法算乘法………………………………………………… 133
22. 用模糊中間數算乘法………………………………………………… 137
23. 用較小數的平方算乘法……………………………………………… 140
24. 接近50的數字相乘…………………………………………………… 143
25. 接近100的數字相乘… ……………………………………………… 147
26. 接近200的數字相乘… ……………………………………………… 151
27. 將數字分解成容易計算的數字再進行計算………………………… 155
第四章 印度乘方計算法…………………………………………………… 158
1. 尾數為5的兩位數的平方……………………………………………… 158
2. 尾數為6的兩位數的平方……………………………………………… 161
3. 尾數為7的兩位數的平方……………………………………………… 164
4. 尾數為8的兩位數的平方……………………………………………… 167
5. 尾數為9的兩位數的平方……………………………………………… 170
6. 11~19平方的計算法… ……………………………………………… 173
7. 21~29平方的計算法… ……………………………………………… 176
8. 31~39平方的計算法… ……………………………………………… 179
9. 任意兩位數的平方… ………………………………………………… 183
10. 任意三位數的平方…………………………………………………… 186
11. 用基數法計算三位數的平方………………………………………… 189
12. 以“10”開頭的三、四位數平方的算法…………………………… 192
13. 兩位數的立方………………………………………………………… 195
14. 用基準數法算兩位數的立方………………………………………… 198
第五章 印度除法計算法及其他技巧… ………………………………… 201
1. 一個數除以9的神奇規律……………………………………………… 201
2. 如果除數以5結尾……………………………………………………… 206
3. 完全平方數的平方根… ……………………………………………… 209
4. 完全立方數的立方根… ……………………………………………… 219
5. 二元一次方程的解法… ……………………………………………… 222
6. 將循環小數轉換成分數… …………………………………………… 225
7. 印度驗算法… ………………………………………………………… 227
8. 一位數與9相乘的手算法……………………………………………… 231
9. 兩位數與9相乘的手算法……………………………………………… 234
10. 6~10之間乘法的手算法… ………………………………………… 238
11. 11~15之間乘法的手算法…………………………………………… 241
12. 16~20之間乘法的手算法…………………………………………… 243
13. 神奇的數字規律……………………………………………………… 245
答 案…………………………………………………………………………… 249
這本書真正讓我感到驚喜的是,它並沒有將“印度數學”和“福爾摩斯思維”割裂開來,而是將兩者巧妙地融閤在一起,形成瞭一種獨特的學習體驗。我一直對印度數學充滿好奇,但從未想過它與邏輯推理能有如此緊密的聯係。作者通過一些生動有趣的數學謎題和遊戲,展示瞭印度數學中蘊含的邏輯思維訓練方法,這些方法並非枯燥的公式推導,而是能夠極大地鍛煉讀者的抽象思維、空間想象力和問題解決能力。例如,書中通過講解一些巧妙的數字遊戲,來演示如何進行快速的心算和推理,這讓我意識到,數學不僅僅是數字和公式,更是一種嚴謹的思維方式。這些練習,與福爾摩斯在案件分析中展現齣的邏輯嚴謹性,有著異麯同工之妙。它讓我明白,培養一種敏銳的邏輯感,可以幫助我們更好地分析問題,發現事物之間的聯係,甚至預測未來的走嚮。這本書就像一個寶藏,裏麵蘊含著豐富的智慧,它不僅提升瞭我對邏輯推理的理解,更讓我對如何更有效地學習和思考有瞭全新的認識。
評分閱讀這本書的過程中,我最大的收獲是認識到“思維習慣”的強大力量。作者並沒有直接教我偵探技巧,而是將重點放在如何培養一種“福爾摩斯式”的思考模式。他通過大量的案例,細緻地解析瞭福爾摩斯在麵對復雜情況時,是如何一步步地剝離迷霧,找到真相的。其中,關於“信息收集與篩選”的部分,給我留下瞭深刻的印象。我之前一直認為,隻要掌握足夠多的信息,就能做齣正確的判斷,但這本書讓我意識到,信息的質量比數量更重要,而如何有效地篩選和組織這些信息,纔是關鍵。書中強調瞭“質疑”的重要性,鼓勵讀者對接收到的信息保持警惕,不輕易相信,而是要通過邏輯和證據來驗證。這讓我意識到,很多時候,我們被錶麵的現象所濛蔽,正是因為我們缺乏質疑精神,或者說,我們太容易接受那些“看起來”閤理的東西。這本書就像一麵鏡子,照齣瞭我思維中的盲點,也為我提供瞭一套係統性的方法,來訓練自己的觀察力、分析力和判斷力,讓我能夠以更清晰、更客觀的視角去看待問題。
評分這本書給我的感覺,與其說是在“教”我如何像福爾摩斯那樣思考,不如說是在“喚醒”我內心深處潛藏的觀察與分析能力。作者並非直接給齣“秘籍”,而是通過一係列引人入勝的案例分析,帶領我一步步體驗福爾摩斯是如何工作的。我印象最深的是關於“假設與驗證”的部分,它不像我之前理解的那樣簡單,而是強調瞭在提齣假設時,需要基於嚴謹的證據,並且在驗證過程中,要時刻保持批判性思維,不被先入為主的觀念所左右。書中通過對不同類型案件的剖析,展示瞭福爾摩斯是如何從看似無關緊略的綫索中,提煉齣關鍵信息,並將其整閤成一個閤乎邏輯的推斷。這種過程,讓我體會到瞭“抽絲剝繭”的真正含義。它不是機械的套用公式,而是一種動態的、充滿智慧的思考過程。讀完這部分,我開始反思自己在日常生活中,是如何做齣判斷的。很多時候,我可能隻是憑藉直覺或者片麵的信息就匆匆下結論,缺乏像福爾摩斯那樣耐心和細緻的分析。這本書讓我明白瞭,真正的洞察力,源於對細節的極緻關注和對邏輯的深刻理解。
評分這本書以一種齣人意料的方式打開瞭我對邏輯和推理的大門,它沒有像我預想的那樣直接灌輸破案技巧,而是巧妙地將“福爾摩斯式思維”拆解成一個個可操作的習慣。我尤其喜歡它對“觀察與推理”的精細解讀,作者不是簡單地告訴你“要注意細節”,而是通過一個個生動的案例,展示瞭觀察者是如何從細微之處捕捉信息,然後如何一步步構建齣邏輯鏈條的。比如,書中提到如何通過鞋底的泥土來判斷一個人的職業和活動範圍,這並非高深的科學,卻是極其有效的推斷方式。它讓我意識到,我們日常生活中積纍的經驗和信息,並非雜亂無章,而是可以被係統地組織和利用的。書中還強調瞭“排除法”的力量,這個在很多推理故事中都齣現的概念,在這裏被賦予瞭更深的內涵,不再僅僅是簡單的“排除不可能”,而是有意識地去識彆並瓦解那些看似閤理卻實際上充滿漏洞的推測。讀完這部分,我開始審視自己思考問題的方式,發現很多時候我會被錶麵的現象所迷惑,缺乏深入探究的動力。這本書就像一個催化劑,激發瞭我對事物背後真相的渴望,也讓我對如何更有效地分析問題有瞭全新的認識。它不是一本速成的速成指南,而是一場關於思維方式的深刻啓濛。
評分坦白說,我在閱讀過程中,時不時會被書中那些齣人意料的“印度數學”元素所吸引,這讓我一度睏惑,這和福爾摩斯有什麼關係?但隨著閱讀的深入,我纔豁然開朗。作者並非將印度數學作為獨立的部分來介紹,而是巧妙地將它融入到福爾摩斯思維的訓練中。例如,書中通過一些有趣的數學遊戲和謎題,來鍛煉讀者的邏輯思維和抽象能力,這些練習往往源自印度古老的數學傳統,但它們的核心目的,是為瞭培養一種嚴謹、係統、能夠處理復雜信息的思維模式。這些數學挑戰,與其說是學習數學公式,不如說是學習一種解題的“心法”。作者在解釋這些數學概念時,並沒有使用艱深的術語,而是用非常生活化的語言和類比,讓我這個對數學有些畏懼的人也能輕鬆理解。通過這些練習,我切實感覺到自己的思維變得更加敏銳,對數字和邏輯關係的敏感度也大大提升。這讓我意識到,很多時候,我們之所以覺得問題棘手,並非問題本身有多麼復雜,而是我們的思維方式受到瞭限製。這本書通過獨特的視角,打破瞭傳統的思維藩籬,提供瞭一種全新的、跨學科的解題思路,這確實令人耳目一新。
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有