DR. MARCOS LÓPEZ DE PRADO manages several multibillion-dollar funds for institutional investors using ML algorithms. Marcos is also a research fellow at Lawrence Berkeley National Laboratory (U.S. Department of Energy, Office of Science). One of the top-10 most read authors in finance (SSRN's rankings), he has published dozens of scientific articles on ML in the leading academic journals, and he holds multiple international patent applications on algorithmic trading. Marcos earned a PhD in Financial Economics (2003), a second PhD in Mathematical Finance (2011) from Universidad Complutense de Madrid, and is a recipient of Spain's National Award for Academic Excellence (1999). He completed his post-doctoral research at Harvard University and Cornell University, where he teaches a Financial ML course at the School of Engineering. Marcos has an Erdös #2 and an Einstein #4 according to the American Mathematical Society.
Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations. Readers will learn how to structure Big data in a way that is amenable to ML algorithms; how to conduct research with ML algorithms on that data; how to use supercomputing methods; how to backtest your discoveries while avoiding false positives. The book addresses real-life problems faced by practitioners on a daily basis, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their particular setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
##呵呵,基本看不懂
评分 评分##提到的分析都很实际, 虽然理论部分有难度,但是仅仅思路就很值得借鉴
评分##比较失望,不过之前听同事说起一些也算有心理准备了。
评分 评分 评分 评分神作,需要N刷。核心是讨论一般机器学习方法在金融时间序列这种特定数据类型上应用的一些问题,比如交叉验证、回测过拟合等等。不是讲策略开发或者投资方法的书。大部分内容作者都发表过,可以看作者主页http://www.quantresearch.info/或者SSRN。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有