面向MATLAB工具箱的神经网络理论与应用

面向MATLAB工具箱的神经网络理论与应用 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
丛爽 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-29

图书介绍


出版社: 中国科学技术大学出版社
ISBN:9787312024313
版次:3
商品编码:10084041
包装:平装
开本:16开
出版时间:2009-04-01
用纸:胶版纸
页数:323
字数:412000
正文语种:中文


类似图书 点击查看全场最低价

相关图书





图书描述

编辑推荐

  最主要的特点在于在阐述最典型的人工神经网络理论的基础上,通过MATLAB环境下提供的神经网络工具箱进行例题的演示与应用,从而使得初学者能够直观地通过或图形或训练特性对神经网络的功能及其应用有较深入和透彻的了解,同时也更加有助于问题的解决。

内容简介

  利用目前国际上流行通用的MATLAB 7.0环境,结合神经网络工具箱4.0.6版本,分别从网络构造、基本原理、学习规则以及训练过程和应用局限性几个方面,通过多层次、多方面的分析与综合,深入浅出地介绍了人工神经网络中的各种典型网络,以及各种不同神经网络之间在原理和特性等方面的不同点与相同点。
  《面向MATLAB工具箱的神经网络理论与应用》可作为计算机、电子学、信息科学、通讯以及自动控制等专业的高年级本科生、研究生以及其他专业科技人员学习神经网络或MATLAB环境下神经网络工具箱时的教材或参考书。

目录

第3版前言
第2版前言
前言
第1章 概述
1.1 人工神经网络概念的提出
1.2 神经细胞以及人工神经元的组成
1.3 人工神经网络应用领域
1.4 人工神经网络发展的回顾
1.5 人工神经网络的基本结构与模型
1.5.1 人工神经元的模型
1.5.2 激活转移函数
1.5.3 单层神经元网络模型结构
1.5.4 多层神经网络
1.5.5 递归神经网络
1.6 用MATLAB计算人工神经网络输出
1.7 本章小结
习题
第2章 前向神经网络
2.1 感知器
2.1.1 感知器的网络结构
2.1.2 感知器的图形解释
2.1.3 感知器的学习规则
2.1.4 网络的训练
2.1.5 感知器的局限性
2.1.6 “异或”问题
2.1.7 解决线性可分性限制的办法
2.1.8 本节小结
2.2 自适应线性元件
2.2.1 自适应线性神经元模型和结构
2.2.2 W-H学习规则
2.2.3 网络训练
2.2.4 例题与分析
2.2.5 对比与分析
2.2.6 单步延时线及其自适应滤波器的实现
2.2.7 自适应线性网络的应用
2.2.8 本节小结
2.3 反向传播网络
2.3.1 BP网络模型与结构
2.3.2 BP学习规则
2.3.3 BP网络的训练及其设计过程
2.3.4 BP网络的设计
2.3.5 限制与不足
2.3.6 反向传播法的改进方法
2.3.7 基于数值优化方法的网络训练算法
2.3.8 数值实例对比
2.3.9 本节小结
习题
第3章 递归神经网络
3.1 各种递归神经网络
3.1.1 全局反馈型递归神经网络
3.1.2 前向递归神经网络
3.1.3 混合型网络
3.1.4 本节小结
3.2 全局反馈递归网络
3.2.1 霍普菲尔德网络模型
3.2.2 状态轨迹
3.2.3 离散型霍普菲尔德网络
3.2.4 连续型霍普菲尔德网络
3.2.5 本节小结
3.3 Elman网络
3.3.1 网络结构及其输入输出关系式
3.3.2 修正网络权值的学习算法
3.3.3 稳定性推导
3.3.4 对稳定性结论的分析
3.3.5 对角递归网络稳定时学习速率的确定
3.3.6 本节小结
3.4 对角递归神经网络
3.4.1 网络结构及其输入输出关系式
3.4.2 网络的稳定性分析
3.4.3 进一步的讨论
3.4.4 数值实例
3.4.5 本节小结
3.5 局部递归神经网络
3.5.1 PIDNNC的设计
3.5.2 闭环控制系统稳定性分析
3.5.3 实时在线控制策略的设计步骤
3.5.4 数值应用
3.5.5 本节小结
习题
第4章 局部连接神经网络
4.1 径向基函数网络
4.1.1 径向基函数及其网络分析
4.1.2 网络的训练与设计
4.1.3 广义径向基函数网络
4.1.4 数字应用对比及性能分析
4.1.5 本节小结
4.2 B样条基函数及其网络
4.3 CMAC神经网络
4.3.1 CMAC网络基本结构
4.3.2 CMAC的学习算法
4.4局 部神经网络的性能对比分析
4.4.1 CMAC、B样条和RBF共有的结构特点
4.4.2 CMAC、B样条和RBF的不同之处
4.5 K型局部连接神经网络
4.5.1 网络结构与权值修正法
4.5.2 网络特性分析
4.5.3 数字应用对比及性能分析
4.5.4 本节小结
习题
第5章 自组织竞争神经网络
5.1 几种联想学习规则
5.1.1 内星学习规则
5.1.2 外星学习规则
5.1.3 科荷伦学习规则
5.2 自组织竞争网络
5.2.1 网络结构
5.2.2 竞争学习规则
5.2.3 竞争网络的训练过程
5.3 科荷伦自组织映射网络
5.3.1 科荷伦网络拓扑结构
5.3.2 网络的训练过程
5.4 自适应共振理论
5.4.1 ART-1网络结构
5.4.2 ART-1的运行过程
5.4.3 ART-2神经网络
5.5 本章小结
习题
第6章 随机神经网络
6.1 概述
6.1.1 随机神经网络的发展
6.1.2 GNN模型描述
6.1.3 RNN的学习算法
6.1.4 RNN的应用
6.1.5 其他随机网络
6.1.6 研究前景
6.2 用Boltzmann机求解典型NP优化问题TSP
6.2.1 Boltzmann机网络模型及其权值修正规则
6.2.2 用Boltzmann机网络解TSP
6.2.3 Boltzmann机与Hopfield网络解TSP的对比
6.2.4 本节小结
6.3 随机神经网络算法改进及其应用
6.3.1 DRNN解TSP的参数推导和改进方法
6.3.2 DRNN网络解TSP改进方法的实验对比
6.3.3 本节小结
6.4 采用DRNN网络优化求解的对比研究
6.4.1 DRNN与Hopfield网络求解TSP的理论分析
6.4.2 DRNN与Hopfield网络解TSP的实验对比
6.4.3 本节小结
习题
第7章 面向工具箱的神经网络实际应用
7.1 综述
7.1.1 神经网络技术的选用
7.1.2 神经网络各种模型的应用范围
7.1.3 网络设计的基本原则
7.2 神经网络在控制系统中的应用
7.2.1 反馈线性化
7.2.2 问题的提出
7.2.3 神经网络设计
7.3 利用神经网络进行字母的模式识别
7.3.1 问题的阐述
7.3.2神经网络的设计
7.4 用于字符识别的三种人工神经网络的性能对比
7.4.1 用于字母识别的感知器网络
7.4.2 用于字母识别的霍普菲尔德网络
7.4.3 字母识别实验及其结果分析
附录A MATLAB 7.1神经网络工具箱4.0.6函数一览表
附录B 程序目录
参考文献

精彩书摘

  第1章 概述
  1.1 人工神经网络概念的提出
  人脑是宇宙中已知最复杂、最完善和最有效的信息处理系统,是生物进化的最高产物,是人类智能、思维和情绪等高级精神活动的物质基础,也是人类认识较少的领域之一。长期以来,人们不断地通过神经学、生物学、心理学、认知学、数学、电子学和计算机科学等一系列学科,对神经网络进行分析和研究,企图揭示人脑的工作机理,了解神经系统进行信息处理的本质,并通过对人脑结构及其信息处理方式的研究,利用大脑神经网络的一些特性,设计出具有类似大脑某些功能的智能系统来处理各种信息,解决不同问题。
  用机器代替人脑的部分劳动是当今科学技术发展的重要标志。计算机就是采用电子元件的组合来完成人脑的某些记忆、计算和判断功能的系统。现代计算机中,每个电子元件的计算速度为纳秒(10-9秒)级,而人脑中每个神经细胞的反应时间只有毫秒(101秒)级。然而在进行诸如记忆回溯、语言理解、直觉推理、图像识别等决策过程中,人脑往往只需要一秒钟左右的时间就可以完成复杂的处理。换句话说,脑神经细胞做出决定需要的运算不超过100步,范德曼(J.A.Feldman)称之为100步程序长度。显然,任何现代串行计算机绝不可能在100步运算中完成类似上述的一些任务。由此人们希望去追求一种新型的信号处理系统,它既有超越人的计算能力,又有类似于人的识别、判断、联想和决策的能力。
  人工神经网络(Artificial Neural Network,简称ANN)正是在人类对其大脑神经网络认识理解的基础上人工构造的能够实现某种功能的神经网络。它是理论化的人脑神经网络的数学模型,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。它实际上是一个由大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。

前言/序言

  在《面向MATLAB工具箱的神经网络理论与应用》第3版中,首先对第2版內容进行了重新整合,将第2版中的感知器、自适应线性元件和反向传播网络这3章合为一章——前向神经网络;然后在第2版的基础之上,增加了最近5年里有关人工神经网络研究中的一些新理论、新进展,包括递归神经网络、局部连接神经网络、随机神经网络及它们的应用等;根据实际应用的情况,在第3版中还删去了第2版中一些不太实用的内容。
  在结构安排上,第3版沿袭本书前两版的特点:每一章的内容,按照网络构造、基本原理、学习规则、训练过程、应用局限性的顺序进行编排。通过多层次、多方面的分析与综合,深入浅出地阐述了各种不同神经网络在原理、特性等方面的不同点与相同点,使不同层次、不同水平和阶段的读者都能够根据自己的情况了解和掌握人工神经网络的精髓和相应的深度,这使得本书既可以作为教材,也适用于自学。通过增加的最新内容,使得本书作为教材使用时也具有更加多样的可选择性:既可作为本科生教材,也可作为研究生教材;教师可以有重点地选择感兴趣的內容来进行40学时或60学时的教学。
  在写作上,第3版仍然保持着前两版所具有的特点:虽然是在介绍人工神经网络理论,但叙述尽量做到深入浅出、浅显易懂,通过采用各种方法,包括理论推导,作图解释,不同结构、算法的特点及功能的对比等,使读者更容易掌握和理解。并在阐述人工神经网络理论的基础上,通过MATLAB环境下提供的神经网络工具箱对一些实际应用问题进行求解演示,努力使读者能够采用工具箱中的函数直接设计训练网络,直观地通过图形或训练特性对神经网络的功能及其应用有一个深入和透彻的认识。

面向MATLAB工具箱的神经网络理论与应用 下载 mobi epub pdf txt 电子书 格式

面向MATLAB工具箱的神经网络理论与应用 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

面向MATLAB工具箱的神经网络理论与应用 下载 mobi pdf epub txt 电子书 格式 2024

面向MATLAB工具箱的神经网络理论与应用 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

神经网络书籍,具体内容还没看

评分

用的着就很好,看你是不是喜欢啃骨头了

评分

书有损坏 而且感觉很旧 物流很好

评分

深入学习,希望能掌握,挺不错的。

评分

正版,优惠

评分

非常好的书

评分

很好的入门学习教材。

评分

¥32.30

评分

不错

类似图书 点击查看全场最低价

面向MATLAB工具箱的神经网络理论与应用 mobi epub pdf txt 电子书 格式下载 2024


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.cndgn.com All Rights Reserved. 新城书站 版权所有