內容簡介
     《有機化學中的光譜方法(第6版)》是一本由英國劍橋大學D. H. Williams和I. Fleming閤著的有機化學光譜方法經典教材。第1版齣版於1966年,《有機化學中的光譜方法(第6版)》為第6版。書中講述瞭近年來迅猛發展的二維核磁共振(如Tocsy、遠‘H-13C COSY)、MALDI、FT-ICR、TOF等新技術。與時俱進,本版較前版在內容上做瞭較大的改動,有關UV和IR光譜的部分講述的更加準確;豐富瞭關於NMR的內容;介紹MS的部分更加講求結閤實際。全書共分為五章,第1章為紫外和可見光譜,論述瞭電子吸收光譜在測定有機基團中的應用;第2章紅外光譜,闡述瞭傅裏葉紅外和喇曼光譜的樣品製備、光譜選律以及各官能團的特徵吸收頻率;第3章核磁共振波譜,主要介紹瞭‘H和13C核磁共振的經驗參數、各種二維NMR的具體應用;第4章質譜,介紹瞭各種粒子譜以及氣相和液相色譜與質譜的聯用;第5章實例和習題,為讀者提供瞭一些選自研究課題、具有啓發性的實例,也為讀者鞏固所學的知識提供瞭練習。《有機化學中的光譜方法(第6版)》理論和實踐並舉,因此也適閤有機化學工作者做為手冊使用。
  讀者對象:高校化學係師生、有關研究人員。     
內頁插圖
          目錄
   Preface
Chapter 1: Ultraviolet and visible spectra
1.1 Introduction
1.2 Chromophores
1.3 The absorption laws
1.4 Measurement of the spectrum
1.5 Vibrational fine structure
1.6 Choice of solvent
1.7 Selection rules and intensity
1.8 Solvent effects
1.9 Searching for a chromophore
1.10 Definitions
1.11 Conjugated dienes
1.12 Polyenes
1.13 Polyeneynes and poly-ynes
1.14 Ketones and aldehydes; π-π* transitions
1.15  Ketones and aldehydes; π-π* transitions
1.16  α,β-Unsaturated acids, esters, nitriles and amides
1.17  The benzene ring
1.18  Substituted benzene rings
1.19  Polycyclic aromatic hydrocarbons
1.20  Heteroaromatic compounds
1.21  Quinones
1.22  Corroles, chlorins and porphyrins
1.23  Non-conjugated interacting chromophores
1.24  The effect ofsteric hindrance to coplanarity
1.25  Internet
1.26  Bibliography
Chapter 2: Infrared spectra
2.1  Introduction
2.2  Preparation of samples and examination in an infrared spectrometer
2.3  Examination in a Raman spectrometer
2.4  Selection rules
2.5  The infrared spectrum
2.6  The use of the tables of characteristic group frequencies
2.7  Absorption frequencies of single bonds to hydrogen 3600-2000 cm-
2.8 Absorption frequencies of triple and cumulated double bonds2300-1930 cm-
2.9 Absorption frequencies of the double-bond region 1900-1500 em-1
2.10  Groups absorbing in the fingerprint region <1500 cm-1
2.11 Internet
2.12  Bibliography
2.13 Correlation charts
2.14  Tables of data
Chapter 3: Nuclear magnetic resonance spectra
3.1 Nuclear spin and resonance
3.2 The measurement of spectra
3.3 The chemical shift
3.4 Factors affecting the chemical shift
3.4.1 Intramolecular factors affecting the chemical shift
3.4.2 Intermolecular factors affecting the chemical shift
3.5 Spin-spin coupling to 13C
3.5.1 13C-2H Coupling
3.5.2 13C-1H Coupling
3.5.3 13C-13C Coupling
3.6 1H-1H Vieinal coupling (3JHH)
3.7 1H-1H Geminal coupling (2JHH)
3.8 1H-1H Long-range coupling (4JHH and 5JHH)
3.9 Deviations from first-order coupling
3.10  The magnitude of 1H-1H coupling constants
3.10.1  Vicinal coupling 3JHH
3.10.2  Geminal coupling (2JHH)
3.10.3  Long-range coupling (4JHH and 5JHH)
3.11 Line broadening and environmental exchange
3.11.1  Efficient relaxation
3.11.2  Environmental exchange
3.12  Improving the NMR spectrum
3.12.1  The effect of changing the magnetic field
3.12.2  Shift reagents
3.12.3  Solvent effects
3.13  Spin decoupling
3.13.1  Simple spin decoupling
3.13.2  Difference decoupling
3.14  The nuclear Overhanser effect
3.14.1  Origins
3.14.2  NOE Difference spectra
3.15  Assignment ofCH3, CH2, CH and quaternary carbons in 13C NMR
3.16  Identifying spin systems——1D-TOCSY
3.17 The separation of chemical shift and coupling onto different axes
3.18 Two-dimensional NMR
3.19 COSY spectra
3.20 NOESY spectra
3.21 2D-TOCSY spectra
3.22 1H-13C COSY spectra
3.22.1  Heteronuclear Multiple Quantum Coherence (HMQC) spectra
3.22.2  Heteronuclear Multiple Bond Connectivity (HMBC) spectra
3.23 Measuring 13C-IH coupling constants (HSQC-HECADE spectra)
3.24 Identifying 13C-13C connections (INADEQUATE spectra)
3.25 Three- and four-dimensional NMR
3.26 Hints for spectroscopic interpretation and structure determination
3.26.1 Carbon spectra
3.26.2 Proton spectra
3.26.3 Hetero-correlations
3.27 Internet
3.28 Bibliography
3.29 Tables of data
Chapter4: Mass spectra
4.1 Introduction
4.2 Ion production from readily volatile molecules
4.2.1 Electron impact (EI)
4.2.2 Chemical Ionisation (CI)
4.3 Ion production from poorly volatile molecules
4.3.1 Fast ion bombardment (FIB or LSIMS)
4.3.2 Laser desorption (LD) and matrix-assisted laser desorption (MALDI)
4.3.3 Electrospray ionisation (ESI)
4.4 Ion analysis
4.4.1 Magnetic analysers
4.4.2 Combined magnetic and electrostatic analysers——high-resolution mass spectra (HRMS)
4.4.3 Ion cyclotron resonance (ICR) analysers
4.4.4 Time-of-flight (TOF) analysers
4.4.5 Quadrupole analysers
4.4.6 Ion-trap analysers
4.5 Structural information from mass spectra
4.5.1 Isotopic abundances
4.5.2 EI spectra
4.5.3 CI spectra
4.5.4 FIB (LSMIS) spectra
4.5.5 MALDI spectra
4.5.6 ESI spectra
4.5.7 ESI-FT-ICR and ESI-FT-Orbitrap spectra
4.6 Separation coupled to mass spectrometry
4.6.1 GC/MS and LC/MS
4.6.2 MS/MS
4.7 MS data systems
4.8 Specific ion monitoring and quantitative MS (SIM and MIM)
4.9 Interprcting the spectrum of an unknown
4.10 Internet
4.11 Bibliography
4.12 Tables of data
Chapter 5: Practice in structure determination
5.1 General approach
5.2 Simple worked examples using 13C NMR alone
5.3 Simple worked examples using 1H N-MR alone
5.4 Simple worked examples using the combined application of all fourspectroscopic ethods
5.5 Simple problems using 13C NMR or joint application of IR and 13C NMR
5.6 Simple problems using 1H NMR
5.7 Problems using a combination of spectroscopic methods
5.8 Answers to problems 1-33
Index      
精彩書摘
     The energy absorbed by the matrix is transferred indirectly to the sample, which reduces any sample decomposition. The matrix is chosen to have solubility properties similar to those of the sample, in order that the sample molecules are properly dispersed. Higher molecular weight oligomeric clumps are produced as 2M+, 3M+, and so on, but these are usually minor components of the spectrum if a well-matched matrix is chosen.
  4.3.3 Electrospray ionisation (ESl) An electrospray is the term applied to the small flow of liquid (generally 1-10 lxl/min) from a capillary needle when a potential difference typically of 3-6 kV is applied between the end of the capillary and a cylindrical electrode located 0.3-2 cm away (Fig. 4.4). The liquid leaves the capillary as a fine mist at or near atmospheric pressure, and consists of highly charged liquid droplets. The charge on these droplets may be selected as positive or negative according to the sign of the voltage applied to the capillary. ESI is especially useful since it can be used to analyse directly the effluent from an HPLC column.
  The use of a sheath gas or nebulising gas promotes efficient spraying of the solution of the sample from the capillary. Sample molecules dissolved in the spray are released from the droplets by evaporation of the solvent. This evaporation is accomplished by passing a drying gas across the spray before it enters a capillary. As the droplets are multiply charged, and reduced in size by evaporation, the rate of desolvation is increased because of repulsive Coulombic forces. These forces eventually overcome the cohesive forces of the droplet, and an MH~ (or M - H+) molecular ion free of solvent is finally produced. The charged particles are carried, by an appropriate electric field, through a capillary and into an ion analyser.      
前言/序言
     This book is the sixth edition of a well-established introductory guide to the interpretation of the ultraviolet, infrared, nuclear magnetic resonance and mass spectra of organic compounds. It is a textbook suitable for a first course in the application of these techniques to structure determination, and as a handbook for organic chemists to keep on their desks throughout their career.  These four spectroscopic methods have been used routinely for several decades to determine the structure of organic compounds, both those made by synthesis and those isolated from natural sources. Every organic chemist needs to be skilled in how to apply them, and to know which method works for which problem. In outline, the ultraviolet spectrum identifies conjugated systems, the infrared spectrum identifies functional groups, the nuclear magnetic resonance spectra identify how the atoms are connected, and the mass spectrum gives the molecular formula. One or more of these techniques nowadays is very frequently enough to identify the complete chemical structure of an unknown compound, or to confirm the structure of a known compound. If they are not enough on their own, there are other methods that the organic chemist can turn to: X-ray diffraction, microwave absorption, the Raman spectrum, electron spin resonance and circular dichroism, among others. Powerful though they are, these techniques are all more specialised, and less part of the everyday practice of most organic chemists,
  We have kept discussion of the theoretical background to a minimum, since application of the spectroscopic methods is possible without a detailed command of the theory behind them. We have described instead how the techniques work, and how to read each of the four kinds of spectra, including each of the most important 2D N-MR spectra. We have included many tables of data at the ends of Chapters 2, 3 and 4, all of which are needed in the day-to-day interpretation of spectra. Finally in Chapter 5, we work through 11 examples of the way in which the four spectroscopic methods can be brought together to solve fairly simple structural problems, and there are 33 problem sets for you to work through for practice.
  In preparing a sixth edition, we have almost completely rewritten the book, to reflect our experience teaching the subject, and to respond to changes that have taken place, both of emphasis and of fact, since the fifth edition was published. The chapters on UV and IR spectra are more concise, the chapter on NMR is expanded, and the chapter on MS made more specific to the everyday, rather than to the more specialised, applications of this technique. The appearance of IR absorptions, formerly gathered at the end of the chapter, are now illustrated at the relevant points in the text. Conversely, we have moved the tables of IR data to the end of the chapter, where they are more convenient for reference, and match the arrangement we have always used for the NMR and MS chapters. Most significantly, we have replaced all of the 60 MHz spectra used hitherto to explain the fundamentals of NMR spectroscopy with new and carefully chosen examples at 400 MHz or more. We have also chosen several new compounds with which to illustrate better the common 2D NMR techniques.    
				
 
				
				
					現代化學研究的基石:解析化學物質結構與性能的綜閤工具集  本書旨在全麵梳理和深入剖析現代化學研究中不可或缺的幾大關鍵技術領域,這些技術是理解物質組成、結構、動態行為以及其宏觀性能的基石。我們聚焦於那些能夠提供高分辨率、高靈敏度信息的先進分析手段,它們共同構成瞭化學傢探究分子世界的“眼睛”和“探針”。   第一部分:電磁輻射與物質相互作用的基礎理論  在深入探討具體技術之前,本書首先構建瞭堅實的理論框架,闡述瞭電磁輻射(EMR)如何與物質發生相互作用,這是所有光譜學方法的核心原理。  1.1 電磁波譜與量子力學基礎  我們詳細迴顧瞭電磁波譜的各個區域(從無綫電波到伽馬射綫),並解釋瞭每種波段的能量如何對應於分子內部特定的能級躍遷。這包括電子能級(紫外-可見光區)、振動能級(紅外區)、轉動能級(微波區)以及核自鏇能級(射頻區)。引入瞭量子力學中的能級概念、薛定諤方程的簡化應用,以及偶極矩、選擇定則(Selection Rules)等決定光譜信號強弱的關鍵因素。  1.2 信號的産生、傳播與檢測  本部分深入討論瞭光與物質相互作用的三種基本模式:吸收(Absorption)、發射(Emission)與散射(Scattering)。我們用嚴謹的數學模型描述瞭吸收強度與樣品濃度、路徑長度之間的關係,即朗伯-比爾定律(Beer-Lambert Law)的適用範圍和局限性。同時,詳細分析瞭儀器設計中至關重要的光路係統、光源的選擇(如黑體輻射源、氘燈、鎢燈)、單色器的原理(棱鏡與衍射光柵)以及高靈敏度探測器的性能參數(如量子效率、噪聲水平)。   第二部分:核磁共振波譜學(NMR Spectroscopy)的深度解析  核磁共振(NMR)是確定分子骨架結構和三維空間構象的最強大技術之一。本書將NMR的介紹分為從基礎到前沿的三個層次。  2.1 基礎原理與單維譜圖的解讀  詳細解釋瞭核自鏇、拉莫爾頻率、磁場梯度對化學位移的影響。重點講解瞭化學位移 ($delta$)、自鏇-自鏇耦閤(J-耦閤)及其解析規則(如n+1規則),這是解讀$^{1}$H和$^{13}$C譜圖的基石。我們提供瞭大量實例,演示如何通過積分麵積、峰形(多重峰)和耦閤常數來推斷相鄰官能團的連接方式和化學環境。  2.2 進階二維NMR技術  現代結構解析越來越依賴於二維譜圖。本書詳盡闡述瞭以下關鍵二維技術及其應用:     COSY (Correlation Spectroscopy): 用於識彆通過鍵連接的質子對。    TOCSY (Total Correlation Spectroscopy): 用於識彆同一自鏇係統的所有質子。    HSQC (Heteronuclear Single Quantum Coherence) 與 HMBC (Heteronuclear Multiple Bond Correlation): 用於建立碳骨架與連接質子之間的直接(1J)和間接(2J, 3J)關聯,是確定復雜分子連接性的黃金標準。  2.3 固體NMR與動態NMR  針對非液體樣品(如聚閤物、晶體或生物大分子復閤物),我們介紹瞭魔角堆積(MAS)技術如何消除偶極耦閤和化學位移各嚮異性,從而獲得類溶液態的高分辨率譜圖。動態NMR則用於研究分子內部的快速運動、構象變化和化學交換過程。   第三部分:分子振動與轉動光譜(IR與拉曼)  紅外(IR)和拉曼光譜是研究分子中化學鍵振動模式和官能團的有效工具,它們提供瞭關於分子幾何形狀和鍵強度的重要信息。  3.1 紅外吸收光譜(IR)  詳細解釋瞭偶極矩變化如何導緻紅外吸收,並係統分類瞭各類官能團的特徵吸收峰(如O-H, C=O, C≡N等)及其在不同化學環境下的位移規律。我們探討瞭傅裏葉變換紅外光譜(FTIR)相對於傳統色散儀的優勢,特彆是其高信噪比和快速掃描能力。  3.2 拉曼散射光譜(Raman Spectroscopy)  與IR互補,拉曼光譜依賴於分子極化率的變化。本書強調瞭拉曼在水溶液、無機物和高對稱性分子分析中的獨特優勢。  3.3 錶麵增強拉曼散射(SERS)  作為一個重要的前沿技術,我們介紹瞭SERS現象,即利用特定金屬納米結構增強分子信號的機製,這在痕量分析和界麵化學研究中具有巨大潛力。   第四部分:電子能級躍遷光譜(UV-Vis)與熒光分析  紫外-可見(UV-Vis)光譜直接反映瞭分子中電子的激發和弛豫過程,是定量分析和研究電子結構變化的基礎技術。  4.1 吸收理論與生色團分析  我們深入探討瞭$pi 
ightarrow pi^$, $n 
ightarrow pi^$, $d 
ightarrow d$ 等電子躍遷的能量和波長($lambda_{max}$)。重點分析瞭共軛效應、溶劑效應和酸堿性如何顯著影響吸收峰的位置和強度(即浴式移動bathochromic shift與藍移hypsochromic shift)。  4.2 熒光光譜與光物理過程  熒光(Fluorescence)和磷光(Phosphorescence)是發射光譜的重要組成部分。本書闡述瞭Jablonski圖,用以描述光激發後分子經曆的輻射和非輻射弛豫過程(如斯托剋斯位移Stokes Shift、係間竄越Intersystem Crossing)。動態熒光測量(如激發態壽命)是探究分子環境敏感性的有力工具。   第五部分:質譜法(Mass Spectrometry)在結構確證中的應用  雖然質譜(MS)不完全是傳統的“光譜”技術,但它通過電磁場分離離子並提供分子量和碎片信息,是結構解析流程中不可或缺的一環。  5.1 離子化技術與分子量測定  詳細介紹瞭軟電離技術(如ESI, MALDI)和硬電離技術(如EI)。重點講解瞭如何通過精確的分子離子峰($[	ext{M}]^+$或$[	ext{M}+	ext{H}]^+$)確定化閤物的分子式。  5.2 碎片模式與結構推斷  分析瞭各種常見官能團在電子轟擊下(EI-MS)的特徵裂解路徑(如$alpha$-裂解、環裂解、重排反應)。通過分析特徵碎片離子對,讀者將能夠係統地重構未知化閤物的分子骨架。  5.3 高分辨質譜(HRMS)與聯用技術  討論瞭TOF和Orbitrap等高分辨率技術如何通過精確質量數來區分具有相同整數質量的同分異構體。此外,本書強調瞭色譜-質譜聯用技術(GC-MS, LC-MS)在復雜混閤物分離和鑒定中的核心地位。  通過對這些核心分析方法的全麵覆蓋和深入探討,本書旨在為化學、材料科學、生物化學及相關領域的科研人員和高級學生提供一套嚴謹、實用且與時俱進的分子結構解析工具箱。