发表于2024-11-23
第1章 度量空间
1.1 度量空间
1.2 度量拓扑
1.3 连续算子
1.4 完备性与不动点定理
习题
第2章 赋范线性空间
2.1 赋范空间的基本概念
2.2 范数的等价性与有限维赋范空间
2.3 Schauder基与可分性
2.4 线性连续泛函与Hahn—Banach定理
2.5 严格凸空间
习题二
第3章 有界线性算子
3.1 有界线性算子
3.2 一致有界原理
3.3 开映射定理与逆算子定理
3.4 闭线性算子与闭图像定理
习题三
第4章 共轭空间
4.1 共轭空间
4.2 自反Banach空间
4.3 弱收敛
4.4 共轭算子
习题四
第5章 Hilbert空间
5.1 内积空间
5.2 投影定理
5.3 Hilbert空间的正交集
5.4 Hilbert空间的共轭空间
习题五
第6章 线性算子的谱理论
6.1 有界线性算子的谱理论
6.2 紧线算子的谱性质
6.3 Hilbert空间上线性算子的谱理论
习题六
第7章 凸性与光滑性
7.1 严格凸与光滑
7.2 一致凸与一致光滑
7.3 凸性与再赋范问题
习题七
部分习题解答
参考文献
索引
泛函分析讲义 下载 mobi pdf epub txt 电子书 格式 2024
泛函分析讲义 下载 mobi epub pdf 电子书12,不变子空间、特征值与特征向量、特征多项式、特征子空间、几何重数与代数重数、可对角化算子的判别法、不变子空间的存在性、共轭线性算子、商算子。
评分数学的演进
评分6,线性算子的范数、线性群的单参数子群、谱半径、仿射空间、仿射映射、仿射空间的同构、仿射子空间、仿射坐标系、仿射同构、Euclid度量、Gram行列式、有向体积。
评分 评分12,商群、同态基本定理、群的同构定理、换位子群、群的直积与半直积、生成元、自由群、可解群、单群。
评分学科
评分 评分9,对称多项式环、多称多项式的基本定理、待定系数法、等幂和、Newton公式、多项式的判别式、结式、复数域的代数封闭性、代数基本定理、Strum定理、多项式根的近似算法、整系数多项式的有理根。
评分今天,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。
泛函分析讲义 mobi epub pdf txt 电子书 格式下载 2024