中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版)

中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版) 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
[日] 上田正仁 著

下載链接在页面底部


點擊這裡下載
    

想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-29


圖書介紹


齣版社: 北京大學齣版社
ISBN:9787301251737
版次:1
商品編碼:11621120
包裝:平裝
叢書名: 中外物理學精品書係
開本:16開
齣版時間:2015-01-01
用紙:膠版紙
頁數:372


類似圖書 點擊查看全場最低價

相關圖書





圖書描述

編輯推薦

  玻色愛因斯坦凝聚是神奇而富有魅力的物理現象。相關研究已經使多位科學傢獲得瞭諾貝爾奬。目前。關於冷原子的研究正蓬勃展開,玻色愛因斯坦凝聚正是其理論基礎。《中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版)》對於相關領域的研究人員來說是不可錯過的佳作。

內容簡介

  《中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版)》首先介紹瞭玻色-愛因斯坦凝聚(BEC)的基本理論。之後,《中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版)》討論瞭快速鏇轉BEC,鏇量和偶極BEC,低維BEC等近來發展迅速的方嚮。本書還介紹瞭平衡或非平衡費米液體超流,包括BCS-BEC交叉、幺正氣體、p波超流等。本書適閤本領域的研究者和研究生閱讀。

作者簡介

  (日)上田正仁,日本東京大學教授。

目錄

Preface v
1. Fundamentals of Bose-Einstein Condensation 1
1.1 Indistinguishability of Identical Particles . . . . . . . . . . 1
1.2 Ideal Bose Gas in a Uniform System . . . . . . . . . . . . 3
1.3 Off-Diagonal Long-Range Order: Bose System . . . . . . 6
1.4 Off-Diagonal Long-Range Order: Fermi System . . . . . . 10
1.5 U(1)Gauge Symmetry . . . . . . . . . . . . . . . . . . . . 11
1.6 Ground-State Wave Function of a Bose System . . . . . . 13
1.7 BEC and Superfluidity . . . . . . . . . . . . . . . . . . . . 15
1.8 Two-FluidModel . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 Fragmented Condensate . . . . . . . . . . . . . . . . . . . 23
1.9.1 Two-statemodel . . . . . . . . . . . . . . . . . . . 23
1.9.2 Degenerate double-well model . . . . . . . . . . . 25
1.9.3 Spin-1 antiferromagnetic BEC . . . . . . . . . . . 27
1.10 Interference Between Independent Condensates . . . . . . 28
1.11 Feshbach Resonance . . . . . . . . . . . . . . . . . . . . . 31
2. Weakly Interacting Bose Gas 33
2.1 Interactions Between Neutral Atoms . . . . . . . . . . . . 33
2.2 Pseudo-PotentialMethod . . . . . . . . . . . . . . . . . . 36
2.3 Bogoliubov Theory . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Bogoliubov transformations . . . . . . . . . . . . . 40
2.3.2 Bogoliubov ground state . . . . . . . . . . . . . . 45
2.3.3 Low-lying excitations and condensate fraction . . 48
2.3.4 Properties of Bogoliubov ground state . . . . . . . 50
2.4 Bogoliubov Theory of Quasi-One-Dimensional Torus . . . 54
2.4.1 Case of BEC at rest: stability of BEC . . . . . . . 55
2.4.2 Case of rotating BEC: Landau criterion . . . . . . 56
2.4.3 Ground state of BEC in rotating torus . . . . . . 59
2.5 Bogoliubov-deGennes (BdG) Theory . . . . . . . . . . . 60
2.6 Method of Binary Collision Expansion . . . . . . . . . . . 65
2.6.1 Equation of state . . . . . . . . . . . . . . . . . . 65
2.6.2 Cluster expansion of partition function . . . . . . 66
2.6.3 Ideal Bose and Fermi gases . . . . . . . . . . . . . 67
2.6.4 Matsubara formula . . . . . . . . . . . . . . . . . 69
3. Trapped Systems 73
3.1 Ideal Bose Gas in a Harmonic Potential . . . . . . . . . . 73
3.1.1 Transition temperature . . . . . . . . . . . . . . . 75
3.1.2 Condensate fraction . . . . . . . . . . . . . . . . . 76
3.1.3 Chemical potential . . . . . . . . . . . . . . . . . 77
3.1.4 Specific heat . . . . . . . . . . . . . . . . . . . . . 77
3.2 BEC in One- and Two-Dimensional Parabolic Potentials . 79
3.2.1 Density of states . . . . . . . . . . . . . . . . . . . 79
3.2.2 Transition temperature . . . . . . . . . . . . . . . 79
3.2.3 Condensate fraction . . . . . . . . . . . . . . . . . 80
3.3 Semiclassical Distribution Function . . . . . . . . . . . . . 81
3.4 Gross-Pitaevskii Equation . . . . . . . . . . . . . . . . . . 83
3.5 Thomas-Fermi Approximation . . . . . . . . . . . . . . . 84
3.6 Collective Modes in the Thomas-Fermi Regime . . . . . . 88
3.6.1 Isotropic harmonic potential . . . . . . . . . . . . 89
3.6.2 Axisymmetric trap . . . . . . . . . . . . . . . . . 91
3.6.3 Scissorsmode . . . . . . . . . . . . . . . . . . . . 92
3.7 VariationalMethod . . . . . . . . . . . . . . . . . . . . . . 93
3.7.1 Gaussian variational wave function . . . . . . . . 94
3.7.2 Collectivemodes . . . . . . . . . . . . . . . . . . . 96
3.8 Attractive Bose-Einstein Condensate . . . . . . . . . . . . 98
3.8.1 Collectivemodes . . . . . . . . . . . . . . . . . . . 99
3.8.2 Collapsing dynamics of an attractive condensate . 102
4. Linear Response and Sum Rules 105
4.1 Linear Response Theory . . . . . . . . . . . . . . . . . . . 105
4.1.1 Linear response of density fluctuations . . . . . . 105
4.1.2 Retarded response function . . . . . . . . . . . . . 108
4.2 Sum Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.1 Longitudinal f-sumrule . . . . . . . . . . . . . . 110
4.2.2 Compressibility sum rule . . . . . . . . . . . . . . 112
4.2.3 Zero energy gap theorem . . . . . . . . . . . . . . 114
4.2.4 Josephson sum rule . . . . . . . . . . . . . . . . . 115
4.3 Sum-Rule Approach to CollectiveModes . . . . . . . . . . 120
4.3.1 Excitation operators . . . . . . . . . . . . . . . . . 121
4.3.2 Virial theorem . . . . . . . . . . . . . . . . . . . . 122
4.3.3 Kohn theorem . . . . . . . . . . . . . . . . . . . . 123
4.3.4 Isotropic trap . . . . . . . . . . . . . . . . . . . . 124
4.3.5 Axisymmetric trap . . . . . . . . . . . . . . . . . 127
5. Statistical Mechanics of Superfluid Systems in a Moving Frame 129
5.1 Transformation toMoving Frames . . . . . . . . . . . . . 129
5.2 Elementary Excitations of a Superfluid . . . . . . . . . . . 131
5.3 Landau Criterion . . . . . . . . . . . . . . . . . . . . . . . 133
5.4 Correlation Functions at Thermal Equilibrium . . . . . . 134
5.5 Normal Fluid Density . . . . . . . . . . . . . . . . . . . . 136
5.6 Low-Lying Excitations of a Superfluid . . . . . . . . . . . 140
5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.7.1 Ideal Bose gas . . . . . . . . . . . . . . . . . . . . 141
5.7.2 Weakly interacting Bose gas . . . . . . . . . . . . 143
6. Spinor Bose-Einstein Condensate 145
6.1 Internal Degrees of Freedom . . . . . . . . . . . . . . . . . 145
6.2 General Hamiltonian of Spinor Condensates . . . . . . . . 146
6.3 Spin-1 BEC . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.1 Mean-field theory of a spin-1 BEC . . . . . . . . . 153
6.3.2 Many-body states in single-mode approximation . 157
6.3.3 Superflow, spin texture, and Berry phase . . . . . 161
6.4 Spin-2 BEC . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7. Vortices 171
7.1 Hydrodynamic Theory of Vortices . . . . . . . . . . . . . 171
7.2 Quantized Vortices . . . . . . . . . . . . . . . . . . . . . . 174
7.3 Interaction Between Vortices . . . . . . . . . . . . . . . . 180
7.4 Vortex Lattice . . . . . . . . . . . . . . . . . . . . . . . . 181
7.4.1 Dynamics of vortex nucleation . . . . . . . . . . . 181
7.4.2 Collective modes of a vortex lattice . . . . . . . . 183
7.5 FractionalVortices . . . . . . . . . . . . . . . . . . . . . . 186
7.6 Spin Current . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.7 Fast Rotating BECs . . . . . . . . . . . . . . . . . . . . . 189
7.7.1 Lowest Landau level approximation . . . . . . . . 189
7.7.2 Mean field quantum Hall regime . . . . . . . . . . 192
7.7.3 Many-body wave functions of a fast
rotating BEC . . . . . . . . . . . . . . . . . . . . 194
8. Fermionic Superfluidity 197
8.1 Ideal Fermi Gas . . . . . . . . . . . . . . . . . . . . . . . . 197
8.2 Fermi Liquid Theory . . . . . . . . . . . . . . . . . . . . . 200
8.3 Cooper Problem . . . . . . . . . . . . . . . . . . . . . . . 205
8.3.1 Two-body problem . . . . . . . . . . . . . . . . . 205
8.3.2 Many-body problem . . . . . . . . . . . . . . . . . 209
8.4 Bardeen-Cooper-Schrieffer (BCS) Theory . . . . . . . . . 211
8.5 BCS-BEC Crossover at T =0 . . . . . . . . . . . . . . . . 215
8.6 Superfluid Transition Temperature . . . . . . . . . . . . . 219
8.7 BCS-BEC Crossover at T _=0 . . . . . . . . . . . . . . . . 221
8.8 Gor'kov-Melik-Barkhudarov Correction . . . . . . . . . . 225
8.9 Unitary Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.10 Imbalanced Fermi Systems . . . . . . . . . . . . . . . . . . 231
8.11 P-Wave Superfluid . . . . . . . . . . . . . . . . . . . . . . 234
8.11.1 Generalized pairing theory . . . . . . . . . . . . . 234
8.11.2 Spin-triplet p-wave states . . . . . . . . . . . . . . 238
9. Low-Dimensional Systems 241
9.1 Non-interacting Systems . . . . . . . . . . . . . . . . . . . 241
9.2 Hohenberg-Mermin-Wagner Theorem . . . . . . . . . . . 243
9.3 Two-Dimensional BEC at Absolute Zero . . . . . . . . . . 246
9.4 Berezinskii-Kosterlitz-Thouless Transition . . . . . . . . . 247
9.4.1 Universal jump . . . . . . . . . . . . . . . . . . . . 247
9.4.2 Quasi long-range order . . . . . . . . . . . . . . . 249
9.4.3 Renormalization-group analysis . . . . . . . . . . 250
9.5 Quasi One-Dimensional BEC . . . 中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版) 下載 mobi epub pdf txt 電子書 格式

中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版) mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版) 下載 mobi pdf epub txt 電子書 格式 2024

中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版) 下載 mobi epub pdf 電子書
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

不錯不錯!東西不錯!不錯不錯!東西不錯!

評分

《中外物理學精品書係:超冷量子氣體》將介紹超冷原子和分子體係中的少體和多體物理性質。擬包括的內容有:超冷原子物理發展迴顧與簡介,原子結構,散射理論基礎,激光冷卻與原子捕陷,玻色愛因斯坦凝聚,Feshbach共振,超冷費米氣體中的BCS-BEC過渡,光晶格中的超冷原子物理與量子仿真,準低維係統(包括少體問題和多體問題),超冷分子和超冷化學,基於超冷原子的量子調控,以及超冷量子氣體的最新進展等。《中外物理學精品書係:超冷量子氣體》的目標讀者是物理專業高年級研究生以及對本領域有興趣的研究人員,通過綜述近十餘年研究的最新進展,期望對他們進入該領域有所幫助。

評分

《中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版)》首先介紹瞭玻色-愛因斯坦凝聚(BEC)的基本理論。之後,《中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版)》討論瞭快速鏇轉BEC,鏇量和偶極BEC,低維BEC等近來發展迅速的方嚮。本書還介紹瞭平衡或非平衡費米液體超流,包括BCS-BEC交叉、幺正氣體、p波超流等。本書適閤本領域的研究者和研究生閱讀。

評分

好好好好好好好好好好好好好好好好好好

評分

買來當參考書,看完再追加評論。

評分

 玻色愛因斯坦凝聚是神奇而富有魅力的物理現象。相關研究已經使多位科學傢獲得瞭諾貝爾奬。目前。關於冷原子的研究正蓬勃展開,玻色愛因斯坦凝聚正是其理論基礎。《中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版)》對於相關領域的研究人員來說是不可錯過的佳作。

評分

幫彆人買的書,很好方便快捷不用跑書店

評分

還行。。。。。。。。

評分

京東方便快捷!下次還買!贊一個!

類似圖書 點擊查看全場最低價

中外物理學精品書係:玻色-愛因斯坦凝聚的基礎與前沿(英文影印版) mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.cndgn.com All Rights Reserved. 新城書站 版权所有