內容簡介
The first one is purely algebraic. Its objective is the classification ofquadratic forms over the field of rational numbers (Hasse-Minkowskitheorem). It is achieved in Chapter IV. The first three chapters contain somepreliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.Chapter V applies the preceding results to integral quadratic forms indiscriminant + 1. These forms occur in various questions: modular functions,differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor-phic functions). Chapter VI gives the proof of the "theorem on arithmeticprogressions" due to Dirichlet; this theorem is used at a critical point in thefirst part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,and in particular, with theta functions. Some of the quadratic forms ofChapter V reappear here.
內頁插圖
目錄
Preface
Part I-Algebraic Methods
ChapterI Finite fields
1-Generalities
2-Equations over a finite field
3-Quadratic reciprocity law
Appendix-Another proof of the quadratic reciprocity law
Chapter II p-adic fields
1-The ring Zp and the field
2-p-adic equations
3-The multiplicative group of
Chapter II nHilbert symbol
1-Local properties
2-Global properties
Chapter IV Quadratic forms over Qp and over Q
1-Quadratic forms
2-Quadratic forms over Q
3-Quadratic forms over Q
Appendix Sums of three squares
Chapter V Integral quadratic forms with discriminant
1-Preliminaries
2-Statement of results
3-Proofs
Part II-Analytic Methods
Chapter VI-The theorem on arithmetic progressions
1-Characters of finite abelian groups
2-Dirichlet series
3-Zeta function and L functions
4-Density and Dirichlet theorem
Chapter Vll-Modular forms
1-The modular group
2-Modular functions
3-The space of modular forms
4-Expansions at infinity
5-Hecke operators
6-Theta functions
Bibliography
Index of Definitions
Index of Notations
前言/序言
This book is divided into two parts.
The first one is purely algebraic. Its objective is the classification ofquadratic forms over the field of rational numbers (Hasse-Minkowskitheorem). It is achieved in Chapter IV. The first three chapters contain somepreliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.Chapter V applies the preceding results to integral quadratic forms indiscriminant + 1. These forms occur in various questions: modular functions,differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor-phic functions). Chapter VI gives the proof of the "theorem on arithmeticprogressions" due to Dirichlet; this theorem is used at a critical point in thefirst part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,and in particular, with theta functions. Some of the quadratic forms ofChapter V reappear here.
The two parts correspond to lectures given in 1962 and 1964 to secondyear students at the Ecole Normale Superieure. A redaction of these lecturesin the form of duplicated notes, was made by J.-J. Saosuc (Chapters l-IV)and J.-P. Ramis and G. Ruget (Chapters VI-VIi). They were very useful tome; I extend here my gratitude to their authors.
算術教程(英文版) [A Course in Arithmetic] 下載 mobi epub pdf txt 電子書 格式
評分
☆☆☆☆☆
果斷推薦,好書,定一個
評分
☆☆☆☆☆
有些難度的一本書,值得數學係數論代數專業的學生讀一下。
評分
☆☆☆☆☆
好難啊看不懂
評分
☆☆☆☆☆
算術不隻是簡單的計算
評分
☆☆☆☆☆
最後一本拿的 外麵全是灰 髒兮兮的 書本身內容當然還是很好的
評分
☆☆☆☆☆
國外係統地整理前人數學知識的書,要算是希臘的歐幾裏得的《幾何原本》最早。《幾何原本》全書共十五捲,後兩捲是後人增補的。全書大部分是屬於幾何知識,在第七、八、九捲中專門討論瞭數的性質和運算,屬於算術的內容。
評分
☆☆☆☆☆
書很薄但內容多少都講到瞭,很不錯
評分
☆☆☆☆☆
算術算術是數學中最古老、最基礎和最初等的部分。它研究數的性質及其運算。把數和數的性質、數和數之間的四則運算在應用過程中的經驗纍積起來,並加以整理,就形成瞭最古老的一門數學——算術。在古代全部數學就叫做算術,現代的代數學、數論等最初就是由算術發展起來的。後來,算學、數學的概念齣現瞭,它代替瞭算術的含義,包括瞭全部數學,算術就變成瞭一個分支瞭。算術(arithmetic) 數學的一個基礎分支。它以自然數和非負分數為主要對象。算術的內容包括兩部分,一部分討論自然數的讀法、寫法和它的基本運算,這一部分包括進位製和記數法,主要是十進位製,其他的 進位製與十進位製僅是采用的基數不同,都可以仿照十進位數的原理和原則進行計算,算術的另一部分包括算術運算的方法與原理的應用。如分數與百分數計算,各種量及其計算,比和比例,以及算術應用題。
評分
☆☆☆☆☆
很不錯,很喜歡,物流給力