(全英文)半导体纳米材料在太赫兹电场中的特性沈韬

(全英文)半导体纳米材料在太赫兹电场中的特性沈韬 pdf epub mobi txt 电子书 下载 2025

沈韬 著
图书标签:
  • Semiconductor Nanomaterials
  • Terahertz
  • Terahertz Spectroscopy
  • Nanomaterials
  • Semiconductors
  • Optoelectronics
  • Material Science
  • Physics
  • Nanotechnology
  • THz Technology
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 博学精华图书专营店
出版社: 冶金工业出版社
ISBN:9787502461614
商品编码:29729344001
包装:平装
出版时间:2014-03-01

具体描述

基本信息

书名:(全英文)半导体纳米材料在太赫兹电场中的特性沈韬

:36.00元

售价:24.5元,便宜11.5元,折扣68

作者:沈韬

出版社:冶金工业出版社

出版日期:2014-03-01

ISBN:9787502461614

字数

页码

版次:1

装帧:平装

开本:16开

商品重量:0.4kg

编辑推荐


内容提要

本书系统详尽地介绍了半导体基础纳米结构在太赫兹电场中的响应特性、空间载流子受激运动机理、解析及快速分析的方法。涵盖了半导体基础理论,载流子输运方程分析、有限元数值方法解析、等效电路分析方法等内容。《半导体纳米材料在太赫兹电场中的特性(英文版)》由沈韬编著。

目录

1 Introduction
 References
2 Theoretical Framework
 2.1 Electromagic Field Theory
 2.2 Brief Review on Related Semiconductor Physics
  2.2.1 Energy band theory
  2.2.2 Carrier concentration at thermal equilibrium
 2.3 Charge Transport in Semiconductor
 References
3 Semiconductor Nanostructure in the Static Electric Field 
 3.1 Semiconductor Nanoplate in the Static Field
 3.2 Semiconductor Nanoparticle in the Static Field
4 Response of Elementary Semiconductor Nanostructures in Quasi-Static Electric Field
 4.1 Carrier Dynamics
 4.2 Semiconductor Nanoplate in the Quasi-Static Field
 4.3 Semiconductor Nanoparticle in the Quasi-Static Field
 References
5 Full Wave Analysis
 5.1 Full Wave Analysis of a Semiconductor Nanoparticle
 5.2 Response of Semiconductor Nanoparticle with High Doping Level in Dynamic Field
6 Equivalent Circuit Representation for Conductive Nanostructure
 6.1 Basic Concepts of Equivalent Circuit
 6.2 Equivalent Circuit Representation for the Semiconductor Nanoplate
 6.3 Equivalent Circuit Representation for the Semiconductor Nanoparticle
 6.4 Equivalent Circuit Representation for the Metal Nanoparticle
 References
7 Conclusion
 7.1 Summary
 7.2 Suggestions for Future Work
Appendix A
Appendix B

作者介绍


文摘


序言



Novel Explorations in Terahertz Spectroscopy and Quantum Dots: A Material Science Perspective This monograph delves into the intricate interplay between novel semiconductor nanostructures and the application of terahertz (THz) electromagnetic fields, offering a comprehensive exploration of their unique physical properties and potential technological breakthroughs. Moving beyond conventional material characterization, this work focuses on meticulously engineered quantum dot (QD) systems, specifically silicon and germanium based, as a platform for understanding and harnessing complex THz interactions. The research presented here bridges fundamental condensed matter physics with cutting-edge material science, aiming to provide a detailed understanding of how quantum confinement and surface effects within these nanostructures dictate their response to THz radiation. The initial chapters lay a robust theoretical and experimental groundwork. A thorough review of THz spectroscopy techniques, from time-domain (THz-TDS) to frequency-domain (THz-FDS) methods, is presented, highlighting their strengths and limitations in probing nanoscale phenomena. Emphasis is placed on advanced spectroscopic approaches, including pump-probe spectroscopy and coherent control experiments, designed to unravel the ultrafast dynamics of charge carriers and excitations within semiconductor nanostructures. The theoretical framework draws upon quantum mechanical principles governing carrier behavior in confined geometries, incorporating concepts such as effective mass approximation, band structure modifications due to quantum confinement, and the role of dielectric mismatch at material interfaces. Detailed discussions on the selection rules for THz transitions within QDs, considering their specific symmetry and dimensionality, are provided. A significant portion of the monograph is dedicated to the synthesis and characterization of tailored silicon and germanium quantum dots. The authors meticulously describe various top-down and bottom-up fabrication techniques, including ion implantation, colloidal synthesis, and epitaxial growth methods. Each fabrication route is critically assessed for its ability to control QD size, shape, composition, and surface passivation, as these parameters are paramount in dictating THz optical properties. Advanced characterization techniques, such as high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS), are employed to verify the structural integrity and surface chemistry of the synthesized QDs. Furthermore, the importance of precise size and shape control is underscored by theoretical calculations predicting distinct THz absorption and emission signatures for different QD morphologies. The core of the research lies in the investigation of THz field interactions with carrier populations within these nanostructures. The monograph presents in-depth analyses of intraband and interband transitions in silicon and germanium QDs under THz irradiation. For silicon QDs, particular attention is paid to the unique electronic band structure, characterized by indirect bandgaps, and how quantum confinement influences the effective bandgap and optical transitions in the THz range. The authors explore the possibility of engineering THz absorption cross-sections through careful control of QD size and the introduction of specific dopants. Similarly, for germanium QDs, the direct bandgap nature and the presence of lighter and heavier holes are discussed in relation to their THz response. The influence of strain engineering, often inherent in QD growth processes, on the THz optical properties is also meticulously investigated. Beyond simple absorption, the monograph explores more sophisticated THz phenomena. This includes a detailed examination of carrier dynamics, such as photoexcitation and relaxation processes, mediated by THz pulses. The temporal evolution of carrier populations, their scattering mechanisms, and the lifetimes of excited states are probed using ultrafast THz spectroscopy. The role of phonons – both confined and interface phonons – in mediating energy relaxation and decoherence is extensively studied, offering insights into the quantum nature of carrier interactions within the nanostructure. The authors present novel findings on phonon-assisted THz absorption and emission, highlighting their dependence on QD size and strain. A key innovation presented is the exploration of THz-induced non-linear optical effects in these nanostructures. The monograph investigates phenomena such as harmonic generation, four-wave mixing, and saturable absorption in the THz regime. These non-linear responses are crucial for developing advanced optical switching and signal processing applications. The authors present experimental evidence and theoretical models explaining the origin of these non-linearities, attributing them to the strong confinement of carriers and the resulting modification of their dielectric response under intense THz fields. The dependence of these non-linearities on QD size distribution, surface defects, and carrier density is systematically analyzed. The work also extends to the investigation of collective phenomena within assemblies of semiconductor QDs. The influence of inter-dot coupling and plasmonic effects on the THz optical response is explored. For instance, the authors discuss how the arrangement and proximity of QDs can lead to enhanced THz absorption or the emergence of collective modes. This opens avenues for designing metamaterials and other nanostructured composites with tunable THz properties. The role of substrate effects and encapsulation layers in modifying the THz response of QD films is also addressed, providing practical considerations for device fabrication. Furthermore, the monograph provides a comprehensive overview of the potential applications of THz-active semiconductor nanostructures. This includes discussions on THz detectors, modulators, emitters, and sensors. The ability to engineer the THz spectral response and carrier dynamics of QDs makes them promising candidates for high-performance THz optoelectronic devices. Specific examples of envisioned applications include non-destructive imaging, security screening, chemical and biological sensing, and advanced telecommunications. The authors emphasize the advantages offered by semiconductor QDs, such as room-temperature operation, high sensitivity, and the potential for integration with existing semiconductor technologies. Finally, the monograph concludes with a forward-looking perspective on future research directions. This includes exploring novel QD materials, such as III-V semiconductors and 2D materials, for THz applications, as well as investigating more complex QD architectures, such as core-shell structures and vertically aligned arrays. The potential for exploiting quantum entanglement and topological properties in THz nanophotonic devices is also briefly touched upon. The authors highlight the critical need for further advancements in fabrication techniques for achieving even greater control over QD properties and for developing efficient coupling mechanisms between QDs and THz fields. The challenges associated with scaling up production and integrating these nanostructures into functional devices are also acknowledged, paving the way for future innovations in the field of THz science and technology.

用户评价

评分

这本书的封面设计相当引人注目,那种深邃的蓝色调与闪烁的微光,似乎在暗示着对未知前沿领域的探索。我刚拿到手的时候,首先被其厚重感所吸引,这通常意味着内容详实,绝非泛泛而谈的科普读物。我原本期望能从中找到一些关于量子点或二维材料在光电器件中应用的实际案例,比如如何优化器件的效率或者提高其稳定性。然而,这本书的论述似乎更加偏向于理论物理的基石层面,对于工程应用层面的着墨不多,这让我感到有些意外。我更倾向于那种能够将复杂的物理现象,通过清晰的数学模型和直观的实验数据联系起来的著作。这本书的行文风格,虽然严谨,但偶尔会显得有些晦涩,需要反复阅读才能把握其核心思想。我希望能看到更多关于实际制造工艺中遇到的挑战,以及如何通过纳米尺度的结构调控来规避这些问题的深度讨论,而不是仅仅停留在“原理是这样的”这个层面。总而言之,它更像是一本为高年级研究生或研究人员准备的专业参考书,而不是面向跨学科工程师的实用手册。

评分

这本书的理论深度毋庸置疑,它成功地构建了一个描述半导体纳米体系在太赫兹场下响应的严密框架。但从阅读体验上讲,我感觉它缺少了一种“叙事性”。好的技术书籍不仅要提供知识,还要讲述知识是如何被发现、如何解决实际难题的历程。这本书更像是一份详尽的数学推导手册,缺少了研究者在面对实验异常时如何修正模型、如何提出新假设的思维过程。比如,在讨论表面等离子体激元时,我更希望看到如何通过对比不同表面粗糙度下的实验结果,来反推表面态密度分布的具体方法,而不是直接给出一个基于理想模型的结论。阅读体验上,我更偏爱那些夹杂着研究者“Aha!”时刻的著作。这本书的语言过于学术化和去情境化,使得那些原本可以通过生动的案例来加强理解的概念,显得有些枯燥和难以亲近。它是一本扎实的工具书,但缺少了点燃读者好奇心的火花。

评分

作为一名从事新型传感器开发的工程师,我一直关注如何利用介电常数的显著变化来设计高灵敏度的化学或生物传感器。我希望这本书能提供一些关于纳米结构如何增强太赫兹波与目标分子相互作用的详细设计指南,比如表面等离子体共振(SPR)在太赫兹波段的工程化应用。这本书中关于结构效应的讨论,更多地停留在“尺寸效应”的定性描述上,缺少对特定几何形状(如纳米线阵列、圆柱体)与入射电磁场耦合强度的量化分析。我更希望看到的是一套设计参数的优化流程,比如如何计算出最佳的结构周期性以达到最大的灵敏度指标。书中的图表虽然专业,但很多是理论计算的结果,而非与实际器件性能直接挂钩的实测数据对比。如果能加入更多关于太赫兹波与生物分子(如蛋白质、DNA)之间特征吸收峰的直接映射实例,那对我的工作将更有指导意义。目前的叙述方式,更像是停留在对基础物理现象的精确描述阶段,而“应用”二字似乎被轻描淡写了。

评分

这本书的排版和公式的准确性无可挑剔,这无疑是专业学术著作的标志。然而,我发现其中关于“非线性”效应的讨论,似乎没有跟上近几年太赫兹科学的快速发展。我们知道,在强太赫兹场下,载流子的输运会呈现出明显的非线性行为,这对于高功率器件的设计至关重要。我期待能读到关于太赫兹倍频或太赫兹场诱导的等离子体振荡的非线性响应的深入分析。书中的内容大多集中在线性响应理论的框架内,对高场下的载流子加热效应、带间跃迁的饱和现象等前沿课题涉及甚少。这使得这本书在时效性上略显不足,对于希望了解当前研究热点的人来说,可能会觉得信息有所滞后。此外,对于不同禁带宽度半导体材料在太赫兹波段的异质结界面处载流子行为的差异化处理,也没有得到足够的篇幅来详尽阐述。

评分

我最近对超快光谱学在材料科学中的应用非常感兴趣,特别是在研究电子-声子耦合动态过程方面。我原以为这本书会深入探讨如何利用太赫兹脉冲来探测半导体异质结中的载流子弛豫机制。当我翻阅目录时,我注意到关于时间分辨技术的部分相对简略,这让我感到有些失望。我期待看到的是像泵浦-探测(Pump-Probe)实验在太赫兹波段的最新进展,特别是如何分辨不同的散射过程,例如德鲁德(Drude)模型与洛伦兹(Lorentz)模型的适用边界。这本书更多地侧重于宏观电磁响应的经典描述,而对于微观层面的动力学过程,例如载流子的输运特性是如何受限于纳米尺度的边界条件和缺陷态影响的,讨论得不够透彻。我对那些能清晰阐述如何通过改变材料的晶格缺陷密度来调控太赫兹吸收谱的章节抱有很高的期望,但实际内容更像是对现有电磁理论的梳理,缺乏新颖的、实验驱动的见解。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有