內容簡介
Uniformization of Compact Riemann Surfaces Geometric Structures on Riemann Surfaces、Preliminaries: Cohomology and Homology Groups、Harmonic and Holomorphic Differential Forms on Riemann Surfaces、The Periods of Holomorphic and Meromorphic Differential Forms、Divisors. The Riemann-Roch Theorem、Holomorphic 1-Forms and Metrics on Compact Riemann Surfaces、Divisors and Line Bundles等。
作者簡介
作者:(德國)喬斯特(Jost.J.)
內頁插圖
目錄
Preface
1 Topological Foundations
1.1 Manifolds and Differentiable Manifolds
1.2 Homotopy of Maps. The Fundamental Group
1.3 Coverings
1.4 Global Continuation of Functions on Simply-Connected Manifolds
2 Differential Geometry of Riemann Surfaces
2.1 The Concept of a Riemann Surface
2.2 Some Simple Properties of Riemann Surfaces
2.3 Metrics on Riemann Surfaces
2.3 A Triangulations of Compact Riemann Surfaces
2.4 Discrete Groups of Hyperbolic Isometries. Fundamental Polygons. Some Basic Concepts of Surface Topology and Geometry.
2.4 A The Topological Classification of Compact Riemann Surfaces
2.5 The Theorems of Gauss-Bonnet and Riemann-Hurwitz
2.6 A General Schwarz Lemma
2.7 Conformal Structures on Tori
3 Harmonic Maps
3.1 Review: Banach and Hilbert Spaces. The Hilbert Space L2
3.2 The Sobolev Space W1 2=H1 2
3.3 The Dirichlet Principle. Weak Solutions of the Poisson Equation
3.4 Harmonic and Subharmonic Functions
3.5 The Ca Regularity Theory
3.6 Maps Between Surfaces. The Energy Integral. Definition and Simple Properties of Harmonic Maps
3.7 Existence of Harmonic Maps
3.8 Regularity of Harmonic Maps
3.9 Uniqueness of Harmonic Maps
3.10 Harmonic Diffeomorphisms
3.11 Metrics and Conformal Structures
4 Teichmuller Spaces
4.1 The Basic Definitions
4.2 Harmonic Maps, Conformal Structures and Holomorphic Quadratic Differentials. Teichmiillers Theorem
4.3 Fenchel-Nielsen Coordinates. An Alternative Approach to the Topology of Teichmiiller Space
4.4 Uniformization of Compact Riemann Surfaces Geometric Structures on Riemann Surfaces
5.1 Preliminaries: Cohomology and Homology Groups
5.2 Harmonic and Holomorphic Differential Forms on Riemann Surfaces
5.3 The Periods of Holomorphic and Meromorphic Differential Forms
5.4 Divisors. The Riemann-Roch Theorem
5.5 Holomorphic 1-Forms and Metrics on Compact Riemann Surfaces
5.6 Divisors and Line Bundles
5.7 Projective Embeddings
5.8 Algebraic Curves
5.9 Abels Theorem and the Jacobi Inversion Theorem
5.10 Elliptic Curves
Bibliography
Index of Notation
Index
前言/序言
The present book started from a set of lecture notes for a course taught to stu-dents at an intermediate level in the German system(roughly C0rrespondingto the beginning graduate student level in the US)in the winter term 86/87in Bochum.The original manuscript has been thoroughly reworked severaltimes although its essential aim has not been changed.Traditionally,many graduate courses in mathematics,and in particular thoseon Riemann surface theory,develop their subject in a most systematic,co-herent,and elegant manner from a single point of view and perspective withgreat methodological purity.MY aim was instead to exhibit the connections0f Djemann surfaces with other areas of mathematics.in particular/two-dimensional)differential geometry,algebraic topology,algebraic geometry,the calculus of variations and(1inear and nonlinear)elliptic partial differ-ential equations.I consider Riemann surfaces as an ideal meeting groundfor analysis,geometry,and algebra and as ideally suited for displaying theunity of mathematics.Therefore,they are perfect for introducing intermedi-ate students to advanced mathematics.A student who has understood thematerial presented in this book knows the fundamental concepts of algebraictopology(fundamental group,homology and cohomology)’the most impor-tant notions and results of(two-dimensional)Riemannian geometry(metric,curvature,geodesic lines,Gauss-Bonnet theorem),the regularity theory forelliptic partial differential equations including the relevant concepts of funC-tional analysis(Hilbert-and Banach spaces and in particular Sobolev spaces),the basic principles of the calculus of variations and many important ideasand results from algebraic geometry(divisors,Riemann-Rocb theorem,pro-jective spaces,algebraic curves,valuations,and many others).Also,she orhe has seen the meaning and the power of all these concepts,methods,andideas at the interesting and nontrivial example of Riemann surfaces.There axe three fundamental theorems in Riemann surface theory,namelythe Uniformization theorem that is concerned with the function theoretic as.pects,Teichm/iller’S theorem that describes the various conformal structureson a given topological surface and for that purpose needs methods from realanalysis.and the Riemann.ROCb theorem that is basic for the algebraic geo-metric theory of compact Riemann surfaces.Among those.
緊黎曼麯麵(第3版)(英文版) [Compact Riemann surface:An Introduction to Contemporary Mathemaitce 3rd ed.] 下載 mobi epub pdf txt 電子書 格式
緊黎曼麯麵(第3版)(英文版) [Compact Riemann surface:An Introduction to Contemporary Mathemaitce 3rd ed.] 下載 mobi pdf epub txt 電子書 格式 2025
緊黎曼麯麵(第3版)(英文版) [Compact Riemann surface:An Introduction to Contemporary Mathemaitce 3rd ed.] 下載 mobi epub pdf 電子書
評分
☆☆☆☆☆
我喜歡看書,喜歡看各種各樣的書,看的很雜,文學名著,流行小說都看,隻要作者的文筆不是太差,總能讓我從頭到腳看完整本書。隻不過很多時候是當成故事來看,看完瞭感嘆一番也就丟下瞭。所在來這裏買書是非常明智的。然而,目前社會上還有許多人被一些價值不大的東西所束縛,卻自得其樂,還覺得很滿足。經過幾百年的探索和發展,人們對物質需求已不再迫切,但對於精神自由的需求卻無端被抹殺瞭。總之,我認為現代人最缺乏的就是一種開闊進取,尋找最大自由的精神。中國人講虛實相生,天人閤一的思想,於空寂處見流行,於流行處見空寂,從而獲得對於道的體悟,唯道集虛。這在傳統的藝術中得到瞭充分的體現,
評分
☆☆☆☆☆
評分
☆☆☆☆☆
評分
☆☆☆☆☆
我喜歡看書,喜歡看各種各樣的書,看的很雜,文學名著,流行小說都看,隻要作者的文筆不是太差,總能讓我從頭到腳看完整本書。隻不過很多時候是當成故事來看,看完瞭感嘆一番也就丟下瞭。所在來這裏買書是非常明智的。然而,目前社會上還有許多人被一些價值不大的東西所束縛,卻自得其樂,還覺得很滿足。經過幾百年的探索和發展,人們對物質需求已不再迫切,但對於精神自由的需求卻無端被抹殺瞭。總之,我認為現代人最缺乏的就是一種開闊進取,尋找最大自由的精神。中國人講虛實相生,天人閤一的思想,於空寂處見流行,於流行處見空寂,從而獲得對於道的體悟,唯道集虛。這在傳統的藝術中得到瞭充分的體現,
評分
☆☆☆☆☆
京東當然非常快的,從配貨到送貨也很具體,快遞非常好,很快收到書瞭。書的包裝非常好,沒有拆開過,非常新,可以說無論自己閱讀傢人閱讀,收藏還是送人都特彆有麵子的說,特彆精美;各種十分美好雖然看著書本看著相對簡單,但也不遑多讓,塑封都很完整封麵和封底的設計、繪圖都十分好畫讓我覺得十分細膩具有收藏價值。書的封套非常精緻推薦大傢購買。 打開書本,書裝幀精美,紙張很乾淨,文字排版看起來非常舒服非常的驚喜,讓人看得欲罷不能,每每捧起這本書的時候 似乎能夠感覺到作者毫無保留的把作品呈現在我麵前。 作業深入淺齣的寫作手法能讓本人猶如身臨其境一般,好似一杯美式咖啡,看似快餐,其實值得迴味 無論男女老少,第一印象最重要。”從你留給彆人的第一印象中,就可以讓彆人看齣你是什麼樣的人。所以多讀書可以讓人感覺你知書答禮,頗有風度。 多讀書,可以讓你多增加一些課外知識。培根先生說過:“知識就是力量。”不錯,多讀書,增長瞭課外知識,可以讓你感到渾身充滿瞭一股力量。這種力量可以激勵著你不斷地前進,不斷地成長。從書中,你往往可以發現自己身上的不足之處,使你不斷地改正錯誤,擺正自己前進的方嚮。所以,書也是我們的良師益友。 多讀書,可以讓你變聰明,變得有智慧去戰勝對手。書讓你變得更聰明,你就可以勇敢地麵對睏難。讓你用自己的方法來解決這個問題。這樣,你又嚮你自己的人生道路上邁齣瞭一步。 多讀書,也能使你的心情便得快樂。讀書也是一種休閑,一種娛樂的方式。讀書可以調節身體的血管流動,使你身心健康。所以在書的海洋裏遨遊也是一種無限快樂的事情。用讀書來為自己放鬆心情也是一種十分明智的。 讀書能陶冶人的情操,給人知識和智慧。所以,我們應該多讀書,為我們以後的人生道路打下好的、紮實的基礎!讀書養性,讀書可以陶冶自己的性情,使自己溫文爾雅,具有書捲氣;讀書破萬捲,下筆如有神,多讀書可以提高寫作能力,寫文章就纔思敏捷;舊書不厭百迴讀,熟讀深思子自知,讀書可以提高理解能力,隻要熟讀深思,你就可以知道其中的道理瞭;讀書可以使自己的知識得到積纍,君子學以聚之。總之,愛好讀書是好事。讓我們都來讀書吧。
評分
☆☆☆☆☆
我喜歡看書,喜歡看各種各樣的書,看的很雜,文學名著,流行小說都看,隻要作者的文筆不是太差,總能讓我從頭到腳看完整本書。隻不過很多時候是當成故事來看,看完瞭感嘆一番也就丟下瞭。所在來這裏買書是非常明智的。然而,目前社會上還有許多人被一些價值不大的東西所束縛,卻自得其樂,還覺得很滿足。經過幾百年的探索和發展,人們對物質需求已不再迫切,但對於精神自由的需求卻無端被抹殺瞭。總之,我認為現代人最缺乏的就是一種開闊進取,尋找最大自由的精神。中國人講虛實相生,天人閤一的思想,於空寂處見流行,於流行處見空寂,從而獲得對於道的體悟,唯道集虛。這在傳統的藝術中得到瞭充分的體現,
評分
☆☆☆☆☆
評分
☆☆☆☆☆
評分
☆☆☆☆☆
緊黎曼麯麵(第3版)(英文版) [Compact Riemann surface:An Introduction to Contemporary Mathemaitce 3rd ed.] mobi epub pdf txt 電子書 格式下載 2025