内容简介
quantum groups first arose in the physics literature, particularly in the work of L. D. Faddeev and the Leningrad school, from the inverse scattering method, which had been developed to construct and solve integrable quantum systems. They have excited great interest in the past few years because of their unexpected connections with such, at first sight, unrelated parts of mathematics as the construction of knot invariants and the representation theory of algebraic groups in characteristic p.
In their original form, quantum groups are associative algebras whose defin-ing relations are expressed in terms of a matrix of constants (depending on the integrable system under consideration) called a quantum R-matrix. It was realized independently by V. G. Drinfeld and M. Jimbo around 1985 that these algebras are Hopf algebras, which, in many cases, are deformations of universal enveloping algebras of Lie algebras. A little later, Yu. I. Manin and S. L. Woronowicz independently constructed non-commutative deforma-tions of the algebra of functions on the groups SL2(C) and SU2, respectively,and showed that many of the classical results about algebraic and topological groups admit analogues in the non-commutative case.
作者简介
作者:(美国)沙里(Chari.V.)
内页插图
目录
Introduction
1 Poisson-Lie groups and Lie bialgebras
1.1 Poisson manifolds
A Definitions
B Functorial properties
C Symplectic leaves
1.2 Poisson-Lie groups
A Definitions
B Poisson homogeneous spaces
1.3 Lie bialgebras
A The Lie bialgebra of a Poisson-Lie group
B Martintriples
C Examples
D Derivations
1.4 Duals and doubles
A Duals of Lie bialgebras and Poisson-Lie groups
B The classical double
C Compact Poisson-Lie groups
1.5 Dressing actions and symplectic leaves
A Poisson actions
B Dressing transformations and symplectic leaves
C Symplectic leaves in compact Poisson-Lie groups
D Thetwsted ease
1.6 Deformation of Poisson structures and quantization
A Deformations of Poisson algebras
BWeylquantization
C Quantization as deformation
Bibliographical notes
2 Coboundary PoissoI-Lie groups and the classical Yang-Baxter equation
2.1 Coboundary Lie bialgebras
A Definitions
B The classical Yang-Baxter equation
C Examples
D The classical double
2.2 Coboundary Poisson-Lie groups
A The Sklyanin bracket
B r-matrices and 2-cocycles
CThe classicalR-matrix
2 3 Classical integrable systems
A Complete integrability
B Lax pairs
C Integrable systems from r-matrices
D Toda systems
Bibliographical notes
3 Solutions of the classical Yang-Baxterequation
3.1 Constant solutions of the CYBE
A The parameter space of non.skew solutions
B Description of the solutions
C Examples
D Skew solutions and quasi-Frobenins Lie algebras
3.2 Solutions of the CYBE with spectral parameters
A Clnssification ofthe solutions
B Elliptic solutions
C Trigonometrie solutions
D Rational solutions
B ibliographical notes
4 Quasitriangular Hopf algebras
4.1 Hopf algebras
A Definitions
B Examples
C Representations of Hopf algebras
D Topological Hopf algebras and duMity
E Integration Oll Hopf algebras
F Hopf-algebras
4.2 Quasitriangular Hopf algebras
A Almost cocommutative Hopf algebras
B Quasitriangular Hopf algebras
C Ribbon Hopf algebras and quantum dimension
D The quantum double
E Twisting
F Sweedler8 example
Bibliographical notes
5 Representations and quasitensor categories
5.1 Monoidal categories
A Abelian categories
B Monoidal categories
C Rigidity
D Examples
E Reconstruction theorems
5.2 Quasitensor categories
ATensorcategories
B Quasitensor categories
C Balancing
D Quasitensor categories and fusion rules
EQuasitensorcategoriesin quantumfieldtheory
5.3 Invariants of ribbon tangles
A Isotopy invariants and monoidal functors
B Tangleinvariants
CCentral ek!ments
Bibliographical notes
6 Quantization of Lie bialgebras
6.1 Deformations of Hopf algebras
A Defmitions
B Cohomologytheory
CIugiditytheorems
6.2 Quantization
A(Co-)Poisson Hopfalgebras
B Quantization
C Existence of quantizations
6.3 Quantized universal enveloping algebras
ACocommut&tiveQUE; algebras
B Quasitriangular QUE algebras
CQUE duals and doubles
D The square of the antipode
6.4 The basic example
A Constmctmn of the standard quantization
B Algebra structure
C PBW basis
D Quasitriangular structure
ERepresentations
F A non-standard quantization
6.5 Quantum Kac-Moody algebras
A The-andard quantization
B The centre
C Multiparameter quantizations Bibliographical notes
7 Quantized function algebras
7.1 The basic example
A Definition
B A basis of.fn(sL2(c))
C TheR-matrixformulation
D Duality
E Representations
7.2 R-matrix quantization
A From It-matrices to bialgebras
B From bialgebras to Hopf algebras:the quantum determinant
C solutions oftheQYBE
7.3 Examples of quantized function algebras
A The general definition
B The quantum speciallinear group
C The quantum orthogonal and symplectic groups
D Multiparameter quantized function algebras
7.4 Differential calculus on quantum groups
A The de Rham complex ofthe quantum plane
BThe deRham complex ofthe quantum m×m matrices
CThedeRhamcomplex ofthe quantum generallinear group
DInvariantforms on quantumGLm
7.5 Integrable lattice models
AVertexmodels
BTransfermatrices
……
9 Specializations of QUE algebras
10 Representations of QUE algebas the generic case
11Representations of QUE algebas the root of unity case
12 Infinite-dimensionalquantum groups
13 Quantum harmonic analysis
14 Canonical bases
15 Quantum gruop invariants f knots and 3-manifolds
16 Quasi-Hopf algebras and the Knizhnik -Zamolodchikov equation
前言/序言
量子群入门 [A Guide to Quantum Groups] 内容提要 本书旨在为读者提供一个全面、深入且易于理解的关于量子群(Quantum Groups)领域的导论与进阶指南。量子群,作为李群和李代数概念的推广与变形,在现代数学物理中占据着核心地位,尤其在表示论、可积系统、统计力学以及拓扑量子场论等前沿领域展现出强大的威力。本书将系统地介绍量子群的代数结构、重要的数学构造,并阐释其在解决物理与数学难题中的实际应用。 第一部分:代数基础与结构 本书伊始,将为读者奠定坚实的代数基础。我们将从复李代数(Complex Lie Algebras)的经典理论出发,回顾根系(Root Systems)、Cartan矩阵以及Weyl群等核心概念。这一回顾不仅是为后续内容做铺垫,也是理解量子群如何从经典结构中“量子化”的关键。 随后,我们将正式引入量子群的数学定义。核心焦点将放在霍夫代数(Hopf Algebras)的结构上。我们将详细阐述量子群 $U_q(mathfrak{g})$ 如何被构造为特定李代数 $mathfrak{g}$ 的一个 $q$-变形,即一个依赖于参数 $q$ 的霍夫代数。重点解析量子群的对偶结构、Antipode(对映元)以及Yang-Baxter方程在其中的自然出现。 我们将深入探讨量子群最重要的表示理论。首先介绍有限维表示的构造,包括权空间(Weight Spaces)、最高权重模(Highest Weight Modules)的分解规律。不同于经典李代数,量子群的表示依赖于参数 $q$ 的取值(如 $q$ 是一个根的单位根,或 $q$ 是一个不定参数)。我们将详细分析在 $q$ 为原根单位根 $zeta$ 时的特殊情况,即“有限维模”或“三角化模”的性质,这与仿射李代数(Affine Lie Algebras)的表示密切相关。 第二部分:关键构造与概念深化 在奠定代数基础后,本书将转向量子群理论中的几个关键且精妙的构造。 R 矩阵与 Yang-Baxter 方程: 我们将详细探讨 $R$ 矩阵的作用。 $R$ 矩阵是量子群表示理论中的核心工具,它本质上是霍夫代数在特定张量积空间上的一个可逆线性算子,它满足著名的量子杨-巴克斯特方程(Quantum Yang-Baxter Equation, QYBE)。我们将展示如何利用李代数的经典 $r$ 矩阵来构造 $R$ 矩阵,并阐述 $R$ 矩阵如何编码了系统在时间演化中的可对易性,这在可积模型的解中至关重要。 量子化与李代数的变体: 理论探讨将延伸至量子群的特定族群。我们将分析 量子环(Quantum Affine Algebras),它们是更广泛的一类结构,与可积晶格模型(Lattice Models)紧密相关。通过对经典仿射李代数的 $q$-变形,展示量子仿射代数在表示论和代数几何中的重要性。 簇代数(Cluster Algebras)的联系: 现代研究表明,量子群与特定代数结构,特别是簇代数之间存在深刻的对偶性。本书将引入 Fomin-Zelevinsky 的理论框架,阐释如何利用量子群的特定表示(如 $L$-矩阵或转移矩阵)来生成簇代数中的特定元素,揭示两者在几何和组合学上的共通性。 第三部分:应用与前沿课题 本书的后半部分将聚焦于量子群在数学物理中的实际应用。 可积系统与统计物理: 量子群理论的起源之一是研究可积模型的精确解。我们将详细讨论如何利用量子群的 $R$ 矩阵,特别是与 Yang-Baxter 方程相关的构造,来构建和求解诸如 XXZ 模型 这样的海森堡链模型。通过量子群的迹函数(Trace Function)和特定权重向量的计算,展示如何通过代数方法获得配分函数(Partition Function)的精确解。 拓扑不变量: 量子群在拓扑学中的应用是其最迷人的领域之一。我们将介绍 纽结理论(Knot Theory) 与量子群的关系。特别是,我们将讨论 Jones 多项式 及其推广——扭转子(Skein Relations) 的代数起源,这直接来自于量子群的特定表示。此外,还将介绍 Reshetikhin-Turaev 理论,该理论利用量子群的框架来定义三维流形上的拓扑不变量(如 Turaev-Viro 理论的代数基础)。 量子群的几何化: 现代数学物理倾向于寻找几何解释。本书将介绍 几何朗兰兹纲领(Geometric Langlands Program) 中量子群所扮演的角色。通过 量子群的晶体基(Crystal Basis) 理论,我们将探讨如何将代数结构转化为纯组合和几何对象,从而理解量子群表示的结构。晶体基提供了一种非线性、无需参数 $q$ 的方式来描述模,极大地简化了表示的构造和分解,并与下降链(Decreasing Chains)紧密相关。 结论 本书的编写旨在培养读者对量子群这一复杂而优美结构的深刻理解,不仅停留在形式的代数操作,更在于把握其背后的物理直觉和数学构造的统一性。通过系统的理论阐述和详尽的实例分析,读者将能够掌握进入现代代数、表示论和理论物理研究的坚实工具。