5,球麵平均法、Kirchhoff公式、Poisson公式、d'Aleert公式、降維法、波動方程Cauchy問題解的穩定性、波的彌散、依賴集閤、Duhamel原理、波動方程的邊值問題與混閤問題、Goursat問題。
評分2,導數的先驗估計、調和函數的解析性、解析延拓定理、Liouville定理、Phragmen-Lindelof定理。
評分3,Dirichlet外問題、Dirichlet內問題、Neumann外問題、Neumann內問題、可去奇點定理、調和函數在無窮遠鄰域中的性質、廣義調和函數與調和函數的關係、Weyl引理。
評分偏微分方程-2
評分3,特徵流形、特徵方程、Holmgren定理、Carleman定理、化二階綫性偏微分方程為標準型。
評分11,對稱雙麯型方程Cauchy問題解的唯一性、對稱雙麯型方程Cauchy問題解的能量不等式、Sobolev嵌入定理、常係數對稱雙麯型方程Cauchy問題解的存在性、常係數對稱雙麯型方程Cauchy問題的求解。
評分 評分4,二階綫性偏微分方程標準型的存在性、二階綫性偏微分方程的分類、偏微分方程問題提法的適定性、反射法、依賴區域、決定區域、影響區域、特徵錐、能量不等式、波動方程Cauchy問題解的唯一性。
評分Halmos,Finite-Dimensional Vector Spaces。(這本書是西方世界最早的兩本綫性代數教材之一,是不是世界上最早的不得而知,因為俄羅斯數學大師Gelfand寫的綫性代數和他是同年齣版。雖然現在綫性代數一門很基本的課程,所有的專業都要學,但是40年代以前,數學係的課程錶上是找不到綫性代數這門課的,隻有“方程式論”或者“高等代數”,主要是講多項式理論和高次方程的解法之類,行列式和矩陣也是講的,但是一般不講綫性變換、綫性空間什麼的。齣現這本課程,很大程度上得益於泛函分析和抽象代數的齣現,還有量子力學的推動。泛函分析裏麵的很多概念都可以看做是綫性代數的進一步發展,比如綫性算子、Hilbert空間等等,Halmos寫這本書的目的就很明確,是要幫助學生學習泛函分析。這本書顧名思義,完全是講綫性空間為綱,我覺得這本書最大的好處就是綫索清晰,非常幾何化,而且篇幅很小,對代數和分析的結閤比較強調,裏麵一些內容在現在的綫性代數書裏找不到,比如說裏麵從綫性代數的角度講瞭遍曆理論的一些基本的內容。)
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有