綫性與非綫性積分方程:方法及應用

綫性與非綫性積分方程:方法及應用 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
佤斯瓦茨(Abdul-Majid Wazwaz) 著

下載链接在页面底部


點擊這裡下載
    

想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-26


圖書介紹


齣版社: 高等教育齣版社
ISBN:9787040316940
版次:1
商品編碼:10706661
包裝:精裝
開本:16開
齣版時間:2011-06-01
頁數:639
正文語種:英文


類似圖書 點擊查看全場最低價

相關圖書





圖書描述

編輯推薦

   關鍵詞:綫性與非綫性Volterra方程,綫性與非綫性Fredholm方程,綫性與非綫性奇異方程,積分方程組。Nonlinear Physical Science focuses on the recent a dvances of fundamental theories and principles, analytical and symbolic approaches, as well as computational techniques in nonlinear physical science and nonlinear mathematics with engineering applications.

內容簡介

   《綫性與非綫性積分方程:方法及應用》是一本同時介紹綫性和非綫性積分方程的教材,分成兩部分,各部分自成體係。第一部分主要對第一類、第二類綫性積分方程進行瞭係統、深入的分析並提供各種解法;第二部分主要講述非綫性積分方程求解及其應用,針對不適定fredholm問題、分歧點和奇異點等問題進行瞭係統的分析,並提供易於理解的處理方法。
   《綫性與非綫性積分方程:方法及應用》通過大量的例子講述綫性與非綫性積分方程新發展起來的高效解法,無須要求讀者對抽象理論本身有很深的理解,同時也討論瞭某些經典方法一些有價值的改進。書中對這些方法都給齣瞭很好的解釋,並通過對這些方法進行對比,使得讀者能夠快速地掌握並選擇可行且高效的方法。《綫性與非綫性積分方程:方法及應用》提供瞭大量的習題,並在書後附有答案。
   《綫性與非綫性積分方程:方法及應用》可作為應用數學、工程學及其相關專業的高年級本科生和研究生教材,也可供相關領域的工程師參考。

內頁插圖

目錄

part i linear integral equations
1 preliminaries
1.1 taylor series
1.2 ordinary differential equations
1.3 leibnitz rule for differentiation of integrals
1.4 reducing multiple integrals to single integrals
1.5 laplace transform
1.6 infinite geometric series
references

2 introductory concepts of integral equations
2.1 classification of integral equations
2.2 classification of integro-differential equations
2.3 linearity and homogeneity
2.4 origins of integral equations
2.5 converting ivp to volterra integral equation
2.6 converting bvp to fredholm integral equation
2.7 solution of an integral equation
references

3 volterra integral equations
3.1 introduction
3.2 volterra integral equations of the second kind
3.3 volterra integral equations of the first kind references

4 fredholm integral equations
4.1 introduction
4.2 fredholm integral equations of the second kind
4.3 homogeneous fredholm integral equation
4.4 fredholm integral equations of the first kind
references

5 volterra integro-differential equations
5.1 introduction
5.2 volterra integro-differential equations of the second kind
5.3 volterra integro-differential equations of the first kind
references
6 fredholm integro-differential equations
6.1 introduction
6.2 fredholm integro-differential equations of the second kind
references

7 abel's integral equation and singular integral equations
7.1 introduction
7.2 abel's integral equation
7.3 the generalized abel's integral equation
7.4 the weakly singular volterra equations
References

8 volterra-fredholm integral equations
8.1 introduction
8.2 the volterra-fredholm integral equations
8.3 the mixed volterra-fredholm integral equations
8.4 the mixed volterra-fredholm integral equations in two variables
references

9 volterra-fredholm integro-differential equations
9.1 introduction
9.2 the volterra-fredholm integro-differential equation
9.3 the mixed volterra-fredholm integro-differential equations
9.4 the mixed volterra-fredholm integro-differential equations in two variables
references

10 systems of volterra integral equations
10.1 introduction
10.2 systems of volterra integral equations of the second kind
10.3 systems of volterra integral equations of the first kind
10.4 systems of volterra integro-differential equations
references

11 systems of fredholm integral equations
11.1 introduction
11.2 systems of fredholm integral equations
11.3 systems of fredholm integro-differential equations
references

12 systems of singular integral equations
12.1 introduction
12.2 systems of generalized abel integral equations
12.3 systems of the weakly singular volterra integral equations
references
part ii nonlinear integral equations

13 nonlinear volterra integral equations
13.1 introduction
13.2 existence of the solution for nonlinear volterra integral equations
13.3 nonlinear volterra integral equations of the second kind
13.4 nonlinear volterra integral equations of the first kind
13.5 systems of nonlinear volterra integral equations
references

14 nonlinear volterra integro-differential equations
14.1 introduction
14.2 nonlinear volterra integro-differential equations of the second kind
14.3 nonlinear volterra integro-differential equations of the first kind
14.4 systems of nonlinear volterra integro-differential equations
references

15 nonlinear fredholm integral equations
15.1 introduction
15.2 existence of the solution for nonlinear fredholm integral equations
15.3 nonlinear fredholm integral equations of the second kind
15.4 homogeneous nonlinear fredholm integral equations
15.5 nonlinear fredholm integral equations of the first kind
15.6 systems of nonlinear fredholm integral equations
references

16 nonlinear fredholm integro-differential equations
16.1 introduction
16.2 nonlinear fredholm integro-differential equations.
16.3 homogeneous nonlinear fredholm integro-differential equations
16.4 systems of nonlinear fredholm integro-differential equations
references

17 nonlinear singular integral equations
17.1 introduction
17.2 nonlinear abel's integral equation
17.3 the generalized nonlinear abel equation
17.4 the nonlinear weakly-singular volterra equations
17.5 systems of nonlinear weakly-singular volterra integral equations
references

18 applications of integral equations
18.1 introduction
18.2 volterra's population model
18.3 integral equations with logarithmic kernels
18.4 the fresnel integrals
18.5 the thomas-fermi equation
18.6 heat transfer and heat radiation
references

appendix a table of indefinite integrals
a.1 basic forms
a.2 trigonometric forms
a.3 inverse trigonometric forms
a.4 exponential and logarithmic forms
a.5 hyperbolic forms
a.6 other forms
appendix b integrals involving irrational algebraic functions

b.1 integrals involving n is an integer, n ≥ 0
b.2 integrals involving n is an odd integer, n ≥ i
appendix c series representations
c.1 exponential functions series
c.2 trigonometric functions
c.3 inverse trigonometric functions
c.4 hyperbolic functions
c.5 inverse hyperbolic functions
c.6 logarithmic functions
appendix d the error and the complementary error
functions
d.1 the error function
d.2 the complementary error function
appendix e gamma function
appendix f infinite series
f.1 numerical series
f.2 trigonometric series
appendix g the fresnel integrals
g.1 the fresnel cosine integral
g.2 the fresnel sine integral
answers
index

精彩書摘

Integral equations and in tegro-differential equations will be classified in to distinct types according to the limits of integration and the kernel K(x, t).Alltypes of integral equations and in tegro differential equations will be classifiedand investigated in the forthcoming chapters.
In this chapter, we will review the most important concepts needed to study integral equations. The traditional methods, such as Taylor seriesmethod and the Laplace transform method, will be used in this text. More-over, the recently developed methods, that will be used thoroughly in this text, will determine the solution in a power series that will converge to an exact solution if such a solution exists. However, if exact solution does not exist, we use as many terms of the obtained series for numerical purposes to approximate the solution.
……��
綫性與非綫性積分方程:方法及應用 下載 mobi epub pdf txt 電子書 格式

綫性與非綫性積分方程:方法及應用 mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

綫性與非綫性積分方程:方法及應用 下載 mobi pdf epub txt 電子書 格式 2024

綫性與非綫性積分方程:方法及應用 下載 mobi epub pdf 電子書
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

適閤積分方程運算,技巧性居多,理論較少

評分

這是一本價廉物美的外文原版書,很好!

評分

適閤積分方程運算,技巧性居多,理論較少

評分

這是一本價廉物美的外文原版書,很好!

評分

專業人士使用。。。。。。。。。。。。。

評分

很好很好很好,以前在京東買東西都是京東係統自動評價的,後來纔知道,評價可以給豆子,纔知道評論的重要性,所以後來不論買什麼東西,都要把這段話復製,粘貼下來,然後財寫寶貝評論,沒錯,多評論,可以多得積分,字數湊夠瞭非常感謝大傢的圍觀!

評分

很好很好很好,以前在京東買東西都是京東係統自動評價的,後來纔知道,評價可以給豆子,纔知道評論的重要性,所以後來不論買什麼東西,都要把這段話復製,粘貼下來,然後財寫寶貝評論,沒錯,多評論,可以多得積分,字數湊夠瞭非常感謝大傢的圍觀!

評分

想讀英文,可以;想學數學,可以;積分微分偏微分,可以。是一本字典,也是教科書。

評分

想讀英文,可以;想學數學,可以;積分微分偏微分,可以。是一本字典,也是教科書。

類似圖書 點擊查看全場最低價

綫性與非綫性積分方程:方法及應用 mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.cndgn.com All Rights Reserved. 新城書站 版权所有