奇异积分和函数的可微性(英文) [Singular Integrals and Diffferentiability Properties of Functions]

奇异积分和函数的可微性(英文) [Singular Integrals and Diffferentiability Properties of Functions] 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
施泰恩(Stein E.M.) 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-23

图书介绍


出版社: 世界图书出版公司
ISBN:9787510035135
版次:1
商品编码:10891446
包装:平装
外文名称:Singular Integrals and Diffferentiability Properties of Functions
开本:24开
出版时间:2011-06-01
页数:287
正文语种:英文


类似图书 点击查看全场最低价

相关图书





图书描述

内容简介

This book is an outgrowth of a course which I gave at Orsay duringthe academic year 1 966.67 MY purpose in those lectures was to pre-sent some of the required background and at the same time clarify theessential unity that exists between several related areas of analysis.These areas are:the existence and boundedness of singular integral op-erators;the boundary behavior of harmonic functions;and differentia-bility properties of functions of several variables.AS such the commoncore of these topics may be said to represent one of the central develop-ments in n.dimensional Fourier analysis during the last twenty years,and it can be expected to have equal influence in the future.These pos.

作者简介

作者:(美国)施泰恩(SteinE.M.)

内页插图

目录

PREFACE
NOTATION
I.SOME FUNDAMENTAL NOTIONS OF REAL.VARIABLE THEORY
The maximal function
Behavior near general points of measurable sets
Decomposition in cubes of open sets in R”
An interpolation theorem for L
Further results

II.SINGULAR INTEGRALS
Review of certain aspects of harmonic analysis in R”
Singular integrals:the heart of the matter
Singular integrals:some extensions and variants of the
preceding
Singular integral operaters which commute with dilations
Vector.valued analogues
Further results

III.RIESZ TRANSFORMS,POLSSON INTEGRALS,AND SPHERICAI HARMONICS
The Riesz transforms
Poisson integrals and approximations to the identity
Higher Riesz transforms and spherical harmonics
Further results

IV.THE LITTLEWOOD.PALEY THEORY AND MULTIPLIERS
The Littlewood-Paley g-function
The functiong
Multipliers(first version)
Application of the partial sums operators
The dyadic decomposition
The Marcinkiewicz multiplier theorem
Further results

V.DIFFERENTIABlLITY PROPERTIES IN TERMS OF FUNCTION SPACES
Riesz potentials
The Sobolev spaces
BesseI potentials
The spaces of Lipschitz continuous functions
The spaces
Further results

VI.EXTENSIONS AND RESTRICTIONS
Decomposition of open sets into cubes
Extension theorems of Whitney type
Extension theorem for a domain with minimally smooth
boundary
Further results

VII.RETURN TO THE THEORY OF HARMONIC FUNCTIONS
Non-tangential convergence and Fatou'S theorem
The area integral
Application of the theory of H”spaces
Further results

VIII.DIFFERENTIATION OF FUNCTIONS
Several qotions of pointwise difierentiability
The splitting of functions
A characterization 0f difrerentiability
Desymmetrization principle
Another characterization of difirerentiabiliW
Further results
APPENDICES
Some Inequalities
The Marcinkiewicz Interpolation Theorem
Some Elementary Properties of Harmonic Functions
Inequalities for Rademacher Functions
BlBLl0GRAPHY
INDEX

精彩书摘

The basic ideas of the theory of reaI variables are connected with theconcepts of sets and ftmctions,together with the processes of integrationand difirerentiation applied to them.WhiIe the essential aspects of theseideas were brought to light in the early part of our century,some of theirfurther applications were developed only more recently.It iS from thislatter perspective that we shall approach that part of the theory thatinterests US.In doing SO,we distinguish several main features: The theorem of Lebesgue about the differentiation of the integral.The study of properties related to this process iS best done in terms of a“maximal function”to which it gives rise:the basic features of the latterare expressed in terms of a“weak-type”inequality which iS characteristicof this situation. Certain covering lemmas.In general the idea iS to cover an arbitraryopen set in terms of a disioint union ofcubes or balls,chosen in a mannerdepending on the problem at hand.ORe such example iS a lemma ofWhitney,fTheorem 3).Sometimes,however,it SHffices to cover only aportion of the set。as in the simple covering lemma,which iS used to provethe weak-type inequality mentioned above. f31 Behavior near a‘'general”point of an arbitrary set.The simplest notion here iS that of point of density.More refined properties are bestexpressed in terms of certain integrals first studied systematically by Marcinkiewicz.
(4)The splitting of functions into their large and small parts.Thisfeature which iS more of a technique than an end in itself,recurs often.ItiS especially useful in proving Linequalities,as in the first theorem ofthis chapter.That part of the proof of the first theorem iS systematizedin the Marcinkiewicz interpolation theorem discussed in§4 of this chapter and also in Appendix B.
......

前言/序言



奇异积分和函数的可微性(英文) [Singular Integrals and Diffferentiability Properties of Functions] 下载 mobi epub pdf txt 电子书 格式

奇异积分和函数的可微性(英文) [Singular Integrals and Diffferentiability Properties of Functions] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

奇异积分和函数的可微性(英文) [Singular Integrals and Diffferentiability Properties of Functions] 下载 mobi pdf epub txt 电子书 格式 2024

奇异积分和函数的可微性(英文) [Singular Integrals and Diffferentiability Properties of Functions] 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

张美丽本人确实很美丽,这是我后来才确认的。在此之前,她的名字是一个传说。

评分

评分

1. 作者是T. Tao的老师

评分

张美丽在我的心中变得栩栩如生却又面目模糊。在过滤掉众多信息之后,唯一烙印在我们这群学生心中的是,据说“张美丽长得好像月历上,那些靠着摩托车摆姿势的女郎”。

评分

本套丛书是数学大师给本科生们写的分析学系列教材。第一作者E. M. Stein是一位调和分析大师,他是1999年沃尔夫奖获得者,同时,他也是一位卓越的教师。他的学生,和学生的学生,加起来超过两百多人,其中有两位已经获得了菲尔兹奖,2006年的菲尔兹奖获奖者之一即为他的学生陶哲轩。这套教材在Princeton大学使用,同时其它学校,比如UCLA等名校也在本科生教学中使用。其教学目的是,用统一的、联系的观点来把现代分析的核心内容教给本科生们,力图使本科生的分析学课程能接上现代数学研究的脉络。

评分

配送太差。不催不给送。催的话就说送的货太多,让等。

评分

Stein大师著名的调和三部曲之一,买来学习观摩

评分

大家之作,数学专著书难得买的还算可以接受,好书,物超所值!

评分

大家之作,数学专著书难得买的还算可以接受,好书,物超所值!

类似图书 点击查看全场最低价

奇异积分和函数的可微性(英文) [Singular Integrals and Diffferentiability Properties of Functions] mobi epub pdf txt 电子书 格式下载 2024


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.cndgn.com All Rights Reserved. 新城书站 版权所有