应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程。
评分书挺好。关键物流挺快的
评分作者是我们的老师。郇老师为人严谨,懂教育,是一个不可多得的老师。他写的书观点高,解法有技巧和想法且简短,非常不错。下面说说此学科。如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。由若干个偏微分方程所构成的等式组就称为偏微分方程组。其未知函数也可以是若干个。当方程的个数超过未知函数的个数时,就称这偏微分方程组为超定的;当方程的个数少于未知函数的个数时,就称为欠定的。
评分好
评分经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。
评分印发还行,买给公公看的,内容好坏就不清楚了。
评分设Ω是自变数空间R中一个区域,u是在这个区域上定义的具|α|阶连续导数的函数。如果它能使方程(2)在Ω上恒等成立,那么就称u是该方程在Ω中的一个经典意义下的解,简称为经典解。在不致误会的情况下,就称为解。
评分印发还行,买给公公看的,内容好坏就不清楚了。
评分设Ω是自变数空间R中一个区域,u是在这个区域上定义的具|α|阶连续导数的函数。如果它能使方程(2)在Ω上恒等成立,那么就称u是该方程在Ω中的一个经典意义下的解,简称为经典解。在不致误会的情况下,就称为解。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有