变分分析 [Variational Analysis]

变分分析 [Variational Analysis] 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
[美] 洛克菲勒(R.Tyrrell Rockafellar),[美] Roger J-B Wets 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-19

图书介绍


出版社: 世界图书出版公司
ISBN:9787510061363
版次:1
商品编码:11323592
包装:平装
外文名称:Variational Analysis
开本:24开
出版时间:2013-10-01
用纸:胶版纸
页数:734
正文语种:英文


类似图书 点击查看全场最低价

相关图书





图书描述

内容简介

  In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis refiects this breadth.
  For a long time, variational problems have been identified mostly with the 'calculus of variations'. In that venerable subject, built around the minimization of integral functionals, constraints were relatively simple and much of the focus was on infinite-dimensional function spaces. A major theme was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of 'variational principles'. Notions of perturbation, approximation and even generalized differentiability were extensively investigated, Variational theory progressed also to the study of so-called stationary points, critical points, and other indications of singularity that a point might have relative to its neighbors, especially in association with existence theorems for differential equations.

目录

Chapter 1. Max and Min
A. Penalties and Constraints
B. Epigraphs and Semicontinuity
C. Attainment of a Minimum
D. Continuity, Closure and Growth
E. Extended Arithmetic
F. Parametric Dependence
G. Moreau Envelopes
H. Epi-Addition and Epi-Multiplication
I*. Auxiliary Facts and Principles
Commentary

Chapter 2. Convexity
A. Convex Sets and Functions
B. Level Sets and Intersections
C. Derivative Tests
D. Convexity in Operations
E. Convex Hulls
F. Closures and Contimuty
G.* Separation
H* Relative Interiors
I* Piecewise Linear Functions
J* Other Examples
Commentary

Chapter 3. Cones and Cosmic Closure
A. Direction Points
B. Horizon Cones
C. Horizon Functions
D. Coercivity Properties
E* Cones and Orderings
F* Cosmic Convexity
G* Positive Hulls
Commentary

Chapter 4. Set Convergence
A. Inner and Outer Limits
B. Painleve-Kuratowski Convergence
C. Pompeiu-Hausdorff Distance
D. Cones and Convex Sets
E. Compactness Properties
F. Horizon Limits
G* Contimuty of Operations
H* Quantification of Convergence
I* Hyperspace Metrics
Commentary

Chapter 5. Set-Valued Mappings
A. Domains, Ranges and Inverses
B. Continuity and Semicontimuty
C. Local Boundedness
D. Total Continuity
E. Pointwise and Graphical Convergence
F. Equicontinuity of Sequences
G. Continuous and Uniform Convergence
H* Metric Descriptions of Convergence
I* Operations on Mappings
J* Generic Continuity and Selections
Commentary .

Chapter 6. Variational Geometry
A. Tangent Cones
B. Normal Cones and Clarke Regularity
C. Smooth Manifolds and Convex Sets
D. Optimality and Lagrange Multipliers
E. Proximal Normals and Polarity
F. Tangent-Normal Relations
G* Recession Properties
H* Irregularity and Convexification
I* Other Formulas
Commentary

Chapter 7. Epigraphical Limits
A. Pointwise Convergence
B. Epi-Convergence
C. Continuous and Uniform Convergence
D. Generalized Differentiability
E. Convergence in Minimization
F. Epi-Continuity of Function-Valued Mappings
G. Continuity of Operations
H* Total Epi-Convergence
I* Epi-Distances
J* Solution Estimates
Commentary

Chapter 8. Subderivatives and Subgradients
A. Subderivatives of Functions
B. Subgradients of Functions
C. Convexity and Optimality
D. Regular Subderivatives
E. Support Functions and Subdifferential Duality
F. Calmness
G. Graphical Differentiation of Mappings
H* Proto-Differentiability and Graphical Regularity
I* Proximal Subgradients
J* Other Results
Commentary

Chapter 9. Lipschitzian Properties
A. Single-Valued Mappings
B. Estimates of the Lipschitz Modulus
C. Subdifferential Characterizations
D. Derivative Mappings and Their Norms
E. Lipschitzian Concepts for Set-Valued Mappings
……

Chapter 10. Subdifferential Calculus
Chapter 11. Dualization
Chapter 12. Monotone Mappings
Chapter 13. Second-Order Theory
Chapter 14. Measurability

前言/序言



变分分析 [Variational Analysis] 下载 mobi epub pdf txt 电子书 格式

变分分析 [Variational Analysis] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

变分分析 [Variational Analysis] 下载 mobi pdf epub txt 电子书 格式 2025

变分分析 [Variational Analysis] 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

书内容是好,里面对subdifferential刻画详细无出其右。但是世图能不能长点心?每次翻开这本书我得带个防毒面具吗?印刷质量已经不能用烂来形容了。简直是危害健康啊!~上打印的都比你质量好

评分

好书啊,盼着很久了终于买到了。

评分

书内容是好,里面对subdifferential刻画详细无出其右。但是世图能不能长点心?每次翻开这本书我得带个防毒面具吗?印刷质量已经不能用烂来形容了。简直是危害健康啊!~上打印的都比你质量好

评分

  不可否认,美国人学工程及数学的人确实越来越少,学商及法律的人也越来越多,但这并不意味着一个普通的(average)受过教育的美国人的数学水平要低于一个普通的受过教育的中国人。即使是在美国的商学院、法学院里数学好的学生肯定也是美国人。这是因为美国的中学提倡的是通才教育,高中的数学是有一定标准的,并且数学中强调逻辑与推理的训练。而中国的学生初中毕业就开始文理分科,其结果是美国最烂的高中毕业的学生的数学水平也要比中国最好的大学毕业的文科博士高很多。美国的正规学校,初中以前基本放羊,但一到高中,立刻严谨。美国一个正规高中学生受到的学业压力不比中国孩子轻。一个普通的中国人在他(她)受教育的过程中,只有在初中以前,有可能有机会比美国人数学好。

评分

  二十多年前,我刚到美国读书时,有一个流行的迷思(myth),就是认为中国人的数学要好过美国人,中国的数学教育要好过美国的数学教育。到了美国后才发现远不是那么回事,在文学院里数学最好的学生是美国人,在工学院里数学最好的学生是美国人,在数学系里最好的学生也还是美国人,而不是中国留学生。当然,偶尔也有例外,比如,若把北大清华毕业的学生放到美国连体育运动员都不屑去的社区学院时。真有本事,同加州理工或麻省理工的美国孩子比。想想看为什么到目前为止还没有中国人(或者更放宽一点,在中国受过教育的人)得到过菲尔茨奖或任何其它数学大奖,这个问题也许不难回答。是的,有一个丘成桐(Shing-Tung Yau),还有一个陶哲轩(Terence Tao),但他们不是中国人,受的也不是中国教育。不敢想象他们若是在中国,会受到什么样的摧残。

评分

一直很想买这书,京东有,下单

评分

好书,经典,应该不错

评分

这是一本非常经典的教材,很是直接拥有,当成工具书也是很好的

评分

好书啊,盼着很久了终于买到了。

类似图书 点击查看全场最低价

变分分析 [Variational Analysis] mobi epub pdf txt 电子书 格式下载 2025


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有