具体描述
内容简介
《生物数学·第1卷(第3版)》是近代生物数学方面的名著。这是第一卷,第三版,在原来版本的基础上做了全面修订。近年来这个科目的茁壮成长和新知识点的不断涌现,新的版本将原来的一卷集分成上下两卷,扩大了知识容量,第二卷绝大多数是新增知识点。书中对生物学中的反应扩散方程和形态发生学的数学理论及研究成果作了全面介绍,是学习与研究生物数学的一部不可多得的参考书。 目录
contents, volume i
preface to the third edition
preface to the first edition
1. continuous population models for single species
1.1 continuous growth models
1.2 insect outbreak model: spruce budworm
1.3 delay models
1.4 linear analysis of delay population models: periodic solutions
1.5 delay models in physiology: periodic dynamic diseases
1.6 harvesting a single natural population
1.7 population model with age distribution
exercises
2. discrete population models for a single species
2.1 introduction: simple models
2.2 cobwebbing: a graphical procedure of solution
2.3 discrete logistic-type model: chaos
2.4 stability, periodic solutions and bifurcations
2.5 discrete delay models
2.6 fishery management model
.2.7 ecological implications and caveats
2.8 tumour cell growth
exercises
3. models for interacting populations
3.1 predator-prey models: lotka-volterra systems
3.2 complexity and stability
3.3 realistic predator-prey models
3.4 analysis of a predator-prey model with limit cycle periodic behaviour: parameter domains of stability
3.5 competition models: competitive exclusion principle
3.6 mutualism or symbiosis
3.7 general models and cautionary remarks
3.8 threshold phenomena
3.9 discrete growth models for interacting populations
3.10 predator-prey models: detailed analysis
exercises
4. temperature-dependent sex determination (tsd)
4.1 biological introduction and historical asides on the crocodilia.
4.2 nesting assumptions and simple population model
4.3 age-structured population model for crocodilia
4.4 density-dependent age-structured model equations
4.5 stability of the female population in wet marsh region l
4.6 sex ratio and survivorship
4.7 temperature-dependent sex determination (tsd) versus genetic sex determination (gsd)
4.8 related aspects on sex determination
exercise
5. modelling the dynamics of marital interaction: divorce prediction and marriage repair
5.1 psychological background and data: gottman and levenson methodology
5.2 marital typology and modelling motivation
5.3 modelling strategy and the model equations
5.4 steady states and stability
5.5 practical results from the model
5.6 benefits, implications and marriage repair scenarios
6. reaction kinetics
6.1 enzyme kinetics: basic enzyme reaction
6.2 transient time estimates and nondimensionalisation
6.3 michaelis-menten quasi-steady state analysis
6.4 suicide substrate kinetics
6.5 cooperative phenomena
6.6 autocatalysis, activation and inhibition
6.7 multiple steady states, mushrooms and isolas
exercises
7. biological oscillators and switches
7.1 motivation, brief history and background
7.2 feedback control mechanisms
7.3 oscillators and switches with two or more species: general qualitative results
7.4 simple two-species oscillators: parameter domain determination for oscillations
7.5 hodgkin-huxley theory of nerve membranes:fitzhugh-nagumo model
7.6 modelling the control of testosterone secretion and chemical castration
exercises
8. bz oscillating reactions
8.1 belousov reaction and the field-koros-noyes (fkn) model
8.2 linear stability analysis of the fkn model and existence of limit cycle solutions
8.3 nonlocal stability of the fkn model
8.4 relaxation oscillators: approximation for the belousov-zhabotinskii reaction
8.5 analysis of a relaxation model for limit cycle oscillations in the belousov-zhabotinskii reaction
exercises
9. perturbed and coupled oscillators and black holes
9.1 phase resetting in oscillators
9.2 phase resetting curves
9.3 black holes
9.4 black holes in real biological oscillators
9.5 coupled oscillators: motivation and model system
9.6 phase locking of oscillations: synchronisation in fireflies
9.7 singular perturbation analysis: preliminary transformation
9.8 singular perturbation analysis: transformed system
9.9 singular perturbation analysis: two-time expansion
9.10 analysis of the phase shift equation and application to coupled belousov-zhabotinskii reactions
exercises
10. dynamics of infectious diseases
10.1 historical aside on epidemics
10.2 simple epidemic models and practical applications
10.3 modelling venereal diseases
10.4 multi-group model for gonorrhea and its control
10.5 aids: modelling the transmission dynamics of the human immunodeficiency virus (hiv)
10.6 hiv: modelling combination drug therapy
10.7 delay model for hiv infection with drug therapy
10.8 modelling the population dynamics of acquired immunity to parasite infection
10.9 age-dependent epidemic model and threshold criterion
10.10 simple drug use epidemic model and threshold analysis
10.11 bovine tuberculosis infection in badgers and caule
10.12 modelling control strategies for bovine tuberculosis in badgers and cattle
exercises
11. reaction diffusion, chemotaxis, and noniocal mechanisms
11.1 simple random walk and derivation of the diffusion equation
11.2 reaction diffusion equations
11.3 models for animal dispersal
11.4 chemotaxis
11.5 nonlocal effects and long range diffusion
11.6 cell potential and energy approach to diffusion and long range effects
exercises
12. oscillator-generated wave phenomena
12. i belousov-zhabotinskii reaction kinematic waves
12.2 central pattern generator: experimental facts in the swimming of fish
12.3 mathematical model for the central pattern generator
12.4 analysis of the phase coupled model system
exercises
13. biological waves: single-species models
13. l background and the travelling waveform
13.2 fisher-kolmogoroff equation and propagating wave solutions
13.3 asymptotic solution and stability of wavefront solutions of the fisher-kolmogoroff equation
13.4 density-dependent diffusion-reaction diffusion models and some exact solutions
13.5 waves in models with multi-steady state kinetics: spread and control of an insect population
13.6 calcium waves on amphibian eggs: activation waves on medaka eggs
13.7 invasion wavespeeds with dispersive variability
13.8 species invasion and range expansion
exercises
14. use and abuse of fractals
14.1 fractals: basic concepts and biological relevance
14.2 examples of fractals and their generation
14.3 fractal dimension: concepts and methods of calculation
14.4 fractals or space-filling?
appendices
a. phase plane analysis
b. routh-hurwitz conditions, jury conditions, descartes'
rule of signs, and exact solutions of a cubic
b.1 polynomials and conditions
b.2 descartes' rule of signs
b.3 roots of a general cubic polynomial
bibliography
index
contents, volume ii
j.d. murray: mathematical biology, ii: spatial models and biomedical applications
preface to the third edition
preface to the first edition
1. multi-species waves and practical applications
1.1 intuitive expectations
1.2 waves of pursuit and evasion in predator-prey systems
1.3 competition model for the spatial spread of the grey squirrel in britain
1.4 spread of genetically engineered organisms
1.5 travelling fronts in the belousov-zhabotinskii reaction
1.6 waves in excitable media
1.7 travelling wave trains in reaction diffusion systems with oscillatory kinetics
1.8 spiral waves
1.9 spiral wave solutions of x-co reaction diffusion systems
2. spatial pattern formation with reaction diffusion systems
2.1 role of pattern in biology
2.2 reaction diffusion (turing) mechanisms
2.3 general conditions for diffusion-driven instability:linear stability analysis and evolution of spatial pattern
2.4 detailed analysis of pattern initiation in a reaction diffusion mechanism
2.5 dispersion relation, turing space, scale and geometry effects in pattern formation models
2.6 mode selection and the dispersion relation
2.7 pattern generation with single-species models: spatial heterogeneity with the spruce budworm model
2.8 spatial patterns in scalar population interaction diffusion equations with convection: ecological control strategies
2.9 nonexistence of spatial patterns in reaction diffusion systems: general and particular results
3. animal coat patterns and other practical applications of reactiondiffusion mechanisms
3.1 mammalian coat patterns--'how the leopard got its spots'
3.2 teratologies: examples of animal coat pattern abnormalities
3.3 a pattern formation mechanism for butterfly wing patterns
3.4 modelling hair patterns in a whorl in acetabularia
4. pattern formation on growing domains: alligators and snakes
4. i stripe pattern formation in the alligator: experiments
4.2 modelling concepts: determining the time of stripe formation
4.3 stripes and shadow stripes on the alligator
4.4 spatial patterning of teeth primordia in the alligator:background and relevance
4.5 biology of tooth initiation
4.6 modelling tooth primordium initiation: background
4.7 model mechanism for alligator teeth patterning
4.8 results and comparison with experimental data
4.9 prediction experiments
4.10 concluding remarks on alligator tooth spatial patterning
4.11 pigmentation pattern formation on snakes
4.12 cell-chemotaxis model mechanism
4.13 simple and complex snake pattern elements
4.14 propagating pattern generation with the celi-chemotaxis system
5. bacterial patterns and chemotaxis
5.1 background and experimental results
5.2 model mechanism for e. coli in the semi-solid experiments
5.3 liquid phase model: intuitive analysis of pattern formation
5.4 interpretation of the analytical results and numerical solutions
5.5 semi-solid phase model mechanism for s. typhimurium
5.6 linear analysis of the basic semi-solid model
5.7 brief outline and results of the nonlinear analysis
5.8 simulation results, parameter spaces, basic patterns
5.9 numerical results with initial conditions from the experiments
5.10 swarm ring patterns with the semi-solid phase model mechanism
5.11 branching patterns in bacillus subtilis
6. mechanical theory for generating pattern and form in development
6.1 introduction, motivation and background biology
6.2 mechanical model for mesenchymal morphogenesis
6.3 linear analysis, dispersion relation and pattern formation potential
6.4 simple mechanical models which generate spatial patterns with complex dispersion relations
6.5 periodic patterns of feather germs
6.6 cartilage condensation in limb morphogenesis and morphogenetic rules
6.7 embryonic fingerprint formation
6.8 mechanochemical model for the epidermis
6.9 formation of microvilli
6.10 complex pattern formation and tissue interaction models
7. evolution, morphogenetic laws, developmental constraints and teratologies
7.1 evolution and morphogenesis
7.2 evolution and morphogenetic rules in cartilage formation in the vertebrate limb
7.3 teratologies (monsters)
7.4 developmental constraints, morphogenetic rules and the consequences for evolution
8.a mechanical theory of vascular network formation
8.1 biological background and motivation
8.2 cell-extracellular matrix interactions for vasculogenesis
8.3 parameter values
8.4 analysis of the model equations
8.5 network patterns: numerical simulations and conclusions
9. epidermal wound healing
9.1 brief history of wound healing
9.2 biological background: epidermal wounds
9.3 model for epidermal wound healing
9.4 nondimensional form, linear stability and parameter values
9.5 numerical solution for the epidermal wound repair model
9.6 travelling wave solutions for the epidermal model
9.7 clinical implications of the epidermal wound model
9.8 mechanisms of epidermal repair in embryos
9.9 actin alignment in embryonic wounds: a mechanical model
9.10 mechanical model with stress alignment of the actin filaments in two dimensions
10. dermal wound healing
10.1 background and motivation---general and biological
10.2 logic of wound healing and initial models
10.3 brief review of subsequent developments
10.4 model for fibroblast-driven wound healing: residual strain and tissue remodelling
10.5 solutions of the model equation solutions and comparison with experiment
10.6 wound healing model of cook (1995)
10.7 matrix secretion and degradation
10.8 cell movement in an oriented environment
10.9 model system for dermal wound healing with tissue structure
10.10 one-dimensional model for the structure of pathological scars
10.11 open problems in wound healing
10.12 concluding remarks on wound healing
11. growth and control of brain tumours
11.1 medical background
11.2 basic mathematical model of glioma growth and invasion
11.3 tumour spread in vitro: parameter estimation
11.4 tumour invasion in the rat brain
11.5 tumour invasion in the human brain
11.6 modelling treatment scenarios: general comments
11.7 modelling tumour resection (removal) in homogeneous tissue
11.8 analytical solution for tumour recurrence after resection
11.9 modelling surgical resection with brain tissue heterogeneity
11.10 modelling the effect of chemotherapy on tumour growth
11.11 modeling tumour polyclonality and cell mutation
12. neural models of pattern formation
12.1 spatial patterning in neural firing with a simple activation-inhibition model
12.2 a mcchanism for stripe formation in the visual cortex
12.3 a model for the brain mechanism underlying visual hallucination patterns
12.4 neural activity model for shell patterns
12.5 shamanism and rock art
13. geographic spread and control of epidemics
13.1 simple model for the spatial spread of an epidemic
13.2 spread of the black death in europe 1347-1350
13.3 brief history of rabies: facts and myths
13.4 the spatial spread of rabies among foxes i: background and simple model
13.5 spatial spread of rabies among foxes ii:three-species (sir) model
13.6 control strategy based on wave propagation into a non-epidemic region: estimate of width of a rabies barrier
13.7 analytic approximation for the width of the rabies control break
13.8 two-dimensional epizootic fronts and effects ot variable fox densitics: quantitative predictions for a rabies outbreak in england
13.9 effect of fox immunity on spatial spread of rabies
14. wolf territoriality, wolf-deer interaction and survival
14.1 introduction and wolf ecology
14.2 models for wolf pack territory formation: single pack--home range model
14.3 multi-wolf pack territorial model
14.4 wolf-deer predator-prey model
14.5 concluding remarks on-wolf territoriality and deer survival
14.6 coyote home range patterns
14.7 chippewa and sioux intertribal conflict c1750-1850
appendix
a. general results for the laplacian operator in bounded domains
bibliography
index 前言/序言
深入探索生命科学的数学视角:《计算生物学导论》 本书特色与定位 《计算生物学导论》旨在为生命科学、生物信息学、数学及计算机科学领域的学生和研究人员提供一个全面、深入且实用的基础框架,用以理解和应用现代计算方法解决复杂的生物学问题。本书侧重于将抽象的数学原理与具体的生物学案例紧密结合,强调从数据驱动的角度理解生命系统的动态性与复杂性。不同于传统生物学教材的定性描述,本书提供了一套量化的工具箱,帮助读者跨越学科壁垒,构建严谨的分析能力。 第一部分:基础数学与统计学回顾 本部分为后续高级主题的奠定基础,内容严谨且具有针对性,专注于生物学研究中最常遇到的数学工具。 1. 线性代数在生物数据中的应用: 详细阐述矩阵运算、特征值分解、奇异值分解(SVD)在处理高维生物数据集中的核心作用。重点讨论主成分分析(PCA)在线性降维、模式识别中的应用,例如基因表达谱的聚类分析和可视化。我们深入探讨了马尔可夫链(Markov Chains)在基因调控网络状态转移、蛋白质折叠构象空间探索中的建模潜力。 2. 概率论与统计推断: 梳理了贝叶斯推断的基本原则,并将其应用于生物学场景,如疾病诊断中的灵敏度与特异性计算,以及基因位点变异的先验与后验概率更新。着重讲解了假设检验(Hypothesis Testing)的流程,包括p值解释、多重检验校正(如Bonferroni和FDR方法)在基因组学研究中的必要性。我们还介绍了最大似然估计(MLE)在参数拟合中的应用。 3. 微分方程与动态系统: 聚焦常微分方程(ODE)在描述生物系统变化率上的能力。内容涵盖了从简单的指数增长/衰减模型,到复杂的Lotka-Volterra捕食者-猎物模型,再到酶促反应的Michaelis-Menten动力学。对于偏微分方程(PDE),本书介绍了反应扩散系统在形态发生(Morphogenesis)中的基础应用,如Turing模式的形成机制,为理解组织和器官的形成提供了数学基础。 第二部分:分子生物学与基因组学中的计算方法 本部分将理论工具应用于当前生物信息学最热门的领域,强调算法的效率与准确性。 4. 序列比对与数据库搜索: 详细解析了Needleman-Wunsch(全局比对)和Smith-Waterman(局部比对)算法的动态规划原理,并探讨了BLAST(Basic Local Alignment Search Tool)背后的启发式加速机制。对序列相似性的统计显著性评估(如E值计算)进行了详尽的数学推导。 5. 从头组装与基因组测序: 涵盖了二代测序(NGS)数据的处理流程。重点讲解了De Bruijn图在短读长序列组装中的核心作用,以及如何利用图论中的路径搜索解决序列重叠和歧义问题。此外,还讨论了重叠群(contig)的质量评估和后续的Scaffolding技术。 6. 系统发育重建: 探讨了如何从分子序列数据构建物种或基因间的进化关系树。详细比较了基于距离的方法(如NJ, UPGMA)和基于字符的方法(如最大简约法和最大似然法)的数学假设和计算复杂度。对贝叶斯方法(如MCMC采样)在系统发育树不确定性评估中的应用进行了介绍。 第三部分:蛋白质结构与功能计算 本部分关注生物大分子的三维结构信息,是理解分子机制的关键。 7. 蛋白质结构预测与比对: 介绍了从氨基酸序列预测二级结构(如α螺旋、β折叠)的统计模型。在三维结构比对方面,重点讲解了旋转和平移变换(如Kabsch算法)在最小化RMSD(均方根偏差)中的应用。对于同源建模(Homology Modeling),阐述了如何利用模板结构进行残基坐标的转化和优化。 8. 蛋白质相互作用网络: 将生物学网络视为图论问题。介绍了节点(分子)、边(相互作用)的定义,以及网络拓扑学指标(如度中心性、介数中心性)在识别关键调节因子中的意义。内容延伸至使用随机模型(如随机图模型)来区分真实生物网络与偶然连接。 第四部分:复杂生物网络与动力学建模 本部分将视角从单个分子提升到细胞和群体水平,关注系统的涌现行为。 9. 生物网络动力学模拟: 回顾了使用ODE和SDE(随机微分方程)来模拟基因调控网络和信号通路的方法。特别关注了随机性在低分子数系统中的重要性,引入了Gillespie算法(或称化学主方程模拟)来直接模拟反应事件的随机演化。 10. 种群遗传学与进化计算: 探讨了群体遗传学中的基本模型,如Wright-Fisher模型,及其在模拟漂变和选择压力下的等位基因频率变化。介绍了如何利用计算方法模拟适应度景观,并评估新突变在种群中的扩散概率。 总结与展望 《计算生物学导论》力求在严谨的数学论证和贴近前沿的生物学应用之间取得完美平衡。本书通过丰富的案例研究、清晰的算法描述和配套的伪代码,确保读者不仅能理解“是什么”,更能掌握“如何做”。掌握这些计算工具,是未来生命科学研究人员在海量组学数据时代取得突破的关键。 目标读者: 生物信息学专业本科高年级及研究生、计算生物学交叉学科研究人员、数学或计算机科学背景希望进入生物领域的学生。 必备知识前提: 基础微积分、线性代数初步知识,以及基本的生物学概念。