中山大学崔尚斌教授最新的数序分析教材,很有现代气息,值得一读。教材对传统数学分析教材的编排做了一些与时俱进的改革,内容做了适当缩减和增补,除了如传统教材一样重视对基础知识和基本技巧的传授外,也增加了一些分析学的新内容。封面美观,印刷精美,很好。例题和习题比较多,证明过程也很详细,内容丰富。全书分为实数域和初等函数、数列的极限、函数的极限和连续性、 函数的导数、导数的应用、不定积分、定积分、定积分的应用、广义积分、无穷级数、函数序列和函数级数、幂级数、傅里叶级数、多元函数的极限和连续性、多元数量函数的微分学、多元向量函数的微分学、多元函数的极值、含参变量的积分、重积分、曲线积分和曲面积分、广义重积分和含参量的重积分、场论初步、微分形式和斯托克斯公式23章,每册书后面有综合习题吗,难度较大,非常精美。本书是作者根据多年讲授数学分析课程的经验,在对部分讲稿进行整理和扩充的基础上编写而成的。读者对象主要为综合性大学数学类各专业的本科生,也适用于师范院校、工科院校数学类各专业的本科生。此外,也可用作运用微积分知识比较多的其他专业,如力学、理论物理、气象等专业的本科生学习数学分析和高等数学课程的参考书。考虑到我国改革开放30多年来中学教育水平己大幅度提高,因而大学新生都已有相当好的中学数学知识,我们对传统数学分析教材的编排做了一些改革,内容做了适当缩减和增补。大力推荐!!!
评分2,Fubini定理、重积分的变量替换、变量替换公式、Sard引理。
评分10,正交函数系、Pythagoras定理、Fourier级数与Fourier系数、Fourier级数的极限性质、完备正交系、三角级数、三角级数的平均收敛性与逐点收敛、Riemann引理、推广的Fourier引理、局部化原理、Fejer定理、Weierstrass第近定理、三角函数系的完备性、Parseval等式、等周不等式。
评分5,切向量、切空间、余切空间、切丛与余切丛、子流形、浸入与嵌入、大范围的隐函数定理。
评分6,阶梯函数的积分、上函数的积分、一般区间上的Lebesgue可积函数类、Lebesgue积分的基本性质、Levi单调收敛定理、Lebesgue控制收敛定理、Lebesgue 广义积分。
评分7,微分形式的积分的物理起源、流形上的微分形式的积分、分布在曲面上的质量、体积形式。
评分7,含参变量积分的定义、含参变量积分的连续性与可微性、含参变量积分的积分、含参变量广义积分的一致收敛性、含参变量广义积分的一致收敛的判别法、反常积分号下取极限、含参变量广义积分的连续性与可微性、含参变量广义积分的积分。
评分7,一元多项式环、多元多项式环、唯一析因环、环中的最大公因与最小公倍、环中元素的互素、整除性的判定、Euclid环、既约多项式、本原多项式、Gauss引理、Eisentein判别法。
评分2,Fubini定理、重积分的变量替换、变量替换公式、Sard引理。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有