10,正交函數係、Pythagoras定理、Fourier級數與Fourier係數、Fourier級數的極限性質、完備正交係、三角級數、三角級數的平均收斂性與逐點收斂、Riemann引理、推廣的Fourier引理、局部化原理、Fejer定理、Weierstrass第近定理、三角函數係的完備性、Parseval等式、等周不等式。
評分寶貝挺好的物流有點不給力喲
評分 評分2,數學歸納法、置換、置換的循環結構、置換的符號、斜對稱函數、數論的基本概念、算術基本定理。
評分3,嚮量與純量、綫性組閤、綫性相關與綫性無關、基與維數、矩陣的秩、綫性方程組的可解性準則、綫性映射、綫性變換、綫性函數、矩陣的運算、逆矩陣、矩陣的等價類、綫性方程組的解空間。
評分7,含參變量積分的定義、含參變量積分的連續性與可微性、含參變量積分的積分、含參變量廣義積分的一緻收斂性、含參變量廣義積分的一緻收斂的判彆法、反常積分號下取極限、含參變量廣義積分的連續性與可微性、含參變量廣義積分的積分。
評分中山大學崔尚斌教授最新的數序分析教材,很有現代氣息,值得一讀。教材對傳統數學分析教材的編排做瞭一些與時俱進的改革,內容做瞭適當縮減和增補,除瞭如傳統教材一樣重視對基礎知識和基本技巧的傳授外,也增加瞭一些分析學的新內容。封麵美觀,印刷精美,很好。例題和習題比較多,證明過程也很詳細,內容豐富。全書分為實數域和初等函數、數列的極限、函數的極限和連續性、 函數的導數、導數的應用、不定積分、定積分、定積分的應用、廣義積分、無窮級數、函數序列和函數級數、冪級數、傅裏葉級數、多元函數的極限和連續性、多元數量函數的微分學、多元嚮量函數的微分學、多元函數的極值、含參變量的積分、重積分、麯綫積分和麯麵積分、廣義重積分和含參量的重積分、場論初步、微分形式和斯托剋斯公式23章,每冊書後麵有綜閤習題嗎,難度較大,非常精美。本書是作者根據多年講授數學分析課程的經驗,在對部分講稿進行整理和擴充的基礎上編寫而成的。讀者對象主要為綜閤性大學數學類各專業的本科生,也適用於師範院校、工科院校數學類各專業的本科生。此外,也可用作運用微積分知識比較多的其他專業,如力學、理論物理、氣象等專業的本科生學習數學分析和高等數學課程的參考書。考慮到我國改革開放30多年來中學教育水平己大幅度提高,因而大學新生都已有相當好的中學數學知識,我們對傳統數學分析教材的編排做瞭一些改革,內容做瞭適當縮減和增補。大力推薦!!!
評分5,非退化行列式的判定、伴隨矩陣、Cramer法則、加邊子式法、作為多重綫性規範反對稱函數的行列式。
評分8,Lebesgue可測函數、可測性與可積性之間的關係、Lebesgue積分號下取極限、交換積分順序、Lebesgue測度、Lebesgue可測集、平方可積函數集、Riesz-Fischer定理。
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有