8,乘积拓扑、乘积空间、Tychonoff乘积定理、连通的拓扑空间、商拓扑、Alexandroff定理、粘合拓扑、完备的度量空间、度量空间的完备化、闭球套引理、第一纲集与第二纲集、Baire纲定理、拓扑空间上的映射的极限、拓扑空间上的映射的连续与一致连续、二重极限与累次极限、压缩映像原理。
评分包装太差了,拿到的书都成残疾了!
评分4,作为度量空间的R^n、R^n中的开集和闭集、R^n中的紧致集、R^n中的范数、作为Euclid空间的R^n。
评分11,用微分学研究自然科学的一些例子。
评分2,变上限的积分、Newton-Leibniz公式、定积分的分部积分与变量替换、积分余项的Talyor公式、面积原理、一元积分学的应用。
评分7,用滤子基对Heine定义的函数极限进行推广、函数的上下极限。
评分不像是新书。。。
评分很好的教材. 值得收藏.
评分10,函数单调性的条件、函数的内极值点、Young不等式、Holder不等式、Minkowski不等式、凸函数、Jensen不等式、函数作图
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有