序
前言
第1章 極限與連續
1.1 預備知識
1.2 數列極限
1.3 函數極限
1.4 函數的連續性
第2章 單變量函數的微分學
2.1 函數的導數
2.2 函數的微分
2.3 微分中值定理
2.4 未定式的極限與洛必達法則
2.5 泰勒公式
2.6 導數的應用
第3章 單變量函數的積分學
3.1 不定積分的概念與性質
3.2 不定積分的計算方法
3.3 定積分的概念和可積函數
3.4 定積分的基本性質與微積分基本定理
3.5 定積分的計算力法
3.6 定積分的應用
3.7 廣義積分
第4章 微分方程
4.1 微分方程的基本概念
4.2 一階微分方程
4.3 可降階的二階微分方程
4.4 二階綫性微分方程解的結構
4.5 二階常係數綫性微分方程
綜閤練習題
部分綜閤練習題解答或提示
10,有勢場、保守場、同倫、管量場、恰當形式、Poincare引理、無鏇場、勢函數。
評分11,Fourier變換、Fourier積分、Fourier積分的點狀收斂定理、速降函數空間、Fourier變換的運算性質、反演公式、Parseval等式、 Fourier變換與捲積、Fourier變換在數學物理方程中的應用、Possion求和公式。
評分9,Beta函數與Gamma函數、Gauss-Euler公式、餘元公式、Stirling公式與Wallis公式、捲積、捲積的微分、Delta函數族、用Delta函數族逼近函數、廣義函數、廣義函數空間、基本解。
評分5,非退化行列式的判定、伴隨矩陣、Cramer法則、加邊子式法、作為多重綫性規範反對稱函數的行列式。
評分題型很不錯,自學下提高數學水平還是挺好的
評分7,含參變量積分的定義、含參變量積分的連續性與可微性、含參變量積分的積分、含參變量廣義積分的一緻收斂性、含參變量廣義積分的一緻收斂的判彆法、反常積分號下取極限、含參變量廣義積分的連續性與可微性、含參變量廣義積分的積分。
評分好書,和科大的教材相匹配
評分不錯
評分5,切嚮量、切空間、餘切空間、切叢與餘切叢、子流形、浸入與嵌入、大範圍的隱函數定理。
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有