序
前言
第1章 極限與連續
1.1 預備知識
1.2 數列極限
1.3 函數極限
1.4 函數的連續性
第2章 單變量函數的微分學
2.1 函數的導數
2.2 函數的微分
2.3 微分中值定理
2.4 未定式的極限與洛必達法則
2.5 泰勒公式
2.6 導數的應用
第3章 單變量函數的積分學
3.1 不定積分的概念與性質
3.2 不定積分的計算方法
3.3 定積分的概念和可積函數
3.4 定積分的基本性質與微積分基本定理
3.5 定積分的計算力法
3.6 定積分的應用
3.7 廣義積分
第4章 微分方程
4.1 微分方程的基本概念
4.2 一階微分方程
4.3 可降階的二階微分方程
4.4 二階綫性微分方程解的結構
4.5 二階常係數綫性微分方程
綜閤練習題
部分綜閤練習題解答或提示
9,Beta函數與Gamma函數、Gauss-Euler公式、餘元公式、Stirling公式與Wallis公式、捲積、捲積的微分、Delta函數族、用Delta函數族逼近函數、廣義函數、廣義函數空間、基本解。
評分還可以
評分10,正交函數係、Pythagoras定理、Fourier級數與Fourier係數、Fourier級數的極限性質、完備正交係、三角級數、三角級數的平均收斂性與逐點收斂、Riemann引理、推廣的Fourier引理、局部化原理、Fejer定理、Weierstrass第近定理、三角函數係的完備性、Parseval等式、等周不等式。
評分1,R^n中的Jordan測度、多重Riemann積分、Riemann可積性、Lebesgue定理、上積分與下積分、Darboux可積性定理、容許集、集閤上的Riemann積分、多重Riemann積分的可加性、多重Riemann積分的估計。
評分很不錯的!好好學習…
評分好
評分6,Rn中麯麵的麵積、嚮量場、李括號、Frobenius定理、張量場、流形上的微分形式與外微分形式、李導數。
評分12,漸進展開、漸進冪級數、Laplace積分、Laplace積分的局部化原理、Watson引理、Laplace積分的漸進展開、穩定相位法。
評分孩子指定要的書,說對學習幫助很大
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有