正版書,送貨上門,質量不錯
評分8,Lebesgue可測函數、可測性與可積性之間的關係、Lebesgue積分號下取極限、交換積分順序、Lebesgue測度、Lebesgue可測集、平方可積函數集、Riesz-Fischer定理。
評分7,連續映射、連續映射與同胚、Peano麯綫、Tietze擴張定理、拓撲空間的緊緻性、Heine-Borel定理、緊緻空間的性質、Bolzano-Weierstrass性質、Lebesgue引理、局部緊空間、Lindelof定理。
評分5,Euler定理、拓撲等價、Euclid空間中映射的連續性、同胚、閉麯麵的分類定理、拓撲不變量。
評分8,乘積拓撲、乘積空間、Tychonoff乘積定理、連通的拓撲空間、商拓撲、Alexandroff定理、粘閤拓撲、完備的度量空間、度量空間的完備化、閉球套引理、第一綱集與第二綱集、Baire綱定理、拓撲空間上的映射的極限、拓撲空間上的映射的連續與一緻連續、二重極限與纍次極限、壓縮映像原理。
評分3,廣義積分的定義、廣義積分的基本性質、廣義積分的變量替換與分部積分公式、廣義積分收斂性的判彆法、有多個奇異點的廣義積分、廣義積分的主值。
評分9,Beta函數與Gamma函數、Gauss-Euler公式、餘元公式、Stirling公式與Wallis公式、捲積、捲積的微分、Delta函數族、用Delta函數族逼近函數、廣義函數、廣義函數空間、基本解。
評分11,隱映射定理、微分同胚、逆映射定理、秩定理、函數相關性、Morse引理。
評分很喜歡,內容講解詳細,課本很新!
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有