8,Lebesgue可测函数、可测性与可积性之间的关系、Lebesgue积分号下取极限、交换积分顺序、Lebesgue测度、Lebesgue可测集、平方可积函数集、Riesz-Fischer定理。
评分4,二重极限可交换的条件、函数族的极限函数的连续性、幂级数的和函数的连续性、Dini定理、函数族极限函数的可积性、函数族的极限函数的可微性、幂级数的和函数的可微性、Cesaro和、Tauber定理。
评分有些印刷错误。1,积分的物理与几何背景、Riemann积分的定义、Riemann可积函数、可积函数空间、Lebesgue定理、Riemann积分积分区间的可加性、积分的估计、积分中值定理、一些重要的积分不等式。
评分7,含参变量积分的定义、含参变量积分的连续性与可微性、含参变量积分的积分、含参变量广义积分的一致收敛性、含参变量广义积分的一致收敛的判别法、反常积分号下取极限、含参变量广义积分的连续性与可微性、含参变量广义积分的积分。
评分经过阿拉伯世界的熏陶,西方人终于开始解放思想。13章,“十六七世纪的代数”,牛顿、莱布尼兹、费马等开始登场,代数终于从几何中脱离出来了。 最后一章射影几何,在经验材料的基础上,在人们对现实应用的需求上,数学(几何学)终于开始走下神坛,新分支新理论终于开始出现。从此,数学的视野不断放宽。 其实大学的射影几何也不过是Desargues一人的成果。 原来帕斯卡最重要的贡献是射影几何方面。 最后一节太精彩了。连续变化的思想就此开始。微积分的思想基础渐渐渗透、增压,待到第二册中引发爆炸。 就整个第一册来讲,有这么样一种感觉:作者太迷恋希腊世界了,然后对罗马世界嗤之以鼻。这也许应该是作者的一种偏见吧。 读古今数学思想1后使我感悟到: 学习数学,重要的是理解,而不是像别的科目一样死背下来. 数学有一个特点,那就是“闻一知十”.做会了一道题,就可以总结这道题所包含的方法和原理,再用总结的原理去解决这类题, 学习数学还有一点很重要,那就是从已知、基本的入手,稳妥当当的去练,不好高骛远,不求全部题都做。 在做题的过程中,最忌讳的就是粗心大意.明明一道题会做,却因大意做错了,是很不值得的. 是一部现代数学名著,一直受到数学界的推崇。作为Rudin的分析学经典著作之一,本书在西方各国乃至我国均有着广泛而深远的影响,被许多高校用做数学分析课的必选教材。本书涵盖了高等微积分学的丰富内容,最精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。第3版经过增删与修订,更加符合学生的阅读习惯与思考方式。
评分5,Euler定理、拓扑等价、Euclid空间中映射的连续性、同胚、闭曲面的分类定理、拓扑不变量。
评分恩物天空俊男美女几乎可能忙忙碌碌肃然起敬泪流满面
评分书出的很好 很有用 很棒
评分5,Euler定理、拓扑等价、Euclid空间中映射的连续性、同胚、闭曲面的分类定理、拓扑不变量。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有