1,超限归纳法、递归原理、势、选择公理、集列的上极限、下极限与极限。
评分6,可测函数、可测空间、Borel可测、可测函数的基本性质、几乎处处收敛性、Egoroff定理、Cauchy函数列、Riesz定理、Luszin 定理、简单函数的Lebesgue积分及其性质。
评分8,Lebesgue可积函数空间的完备性、Lebesgue控制收敛定理、Levi单调收敛定理、Fatou定理、可积性的判据。
评分测度与积分
评分1,商代数、Banach代数、Wiener代数、Banach代数的拓扑同构、Hilbert恒等式、Gelfand-Mazur定理、Banach代数的谱半径、谱半径公式、拟幂零Banach代数、整全纯运算、Gelfand定理、Gelfand变换。
评分看着还不错看着还不错
评分7,Lebesgue积分的一般定义、Lebesgue积分的基本性质、Chebyshev不等式、具有无限测度的空间上的积分。
评分7,von Neumann双换位子定理、von Neumann代数、堺定理、von Neumann定理、连续泛函运算、连续泛函运算的谱映射法则、任意有界算子的极分解、算子的比较、自伴算子的结合族、预解。
评分3,Plancherel定理、Hilbert-Fourier变换、Paley-Wiener定理、Sobolev空间、Sobolev单射定理、正则化、偏微分方程的基本解、mathcal{D}_{+}^{/}代数。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有