组合几何趣谈

组合几何趣谈 pdf epub mobi txt 电子书 下载 2025

丁仁 著
图书标签:
  • 几何
  • 组合数学
  • 趣味数学
  • 数学普及
  • 图形推理
  • 思维训练
  • 中学数学
  • 竞赛数学
  • 数学史
  • 问题解决
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 科学出版社
ISBN:9787030540775
版次:1
商品编码:12245610
包装:平装
丛书名: 七彩数学
开本:32开
出版时间:2017-09-01
用纸:胶版纸
页数:308
字数:150000
正文语种:中文

具体描述

内容简介

  《组合几何趣谈》介绍一系列典型而有趣的组合几何问题。《组合几何趣谈》论述力求深入浅出,周密详尽,配有大量插图,以便读者思考理解;《组合几何趣谈》既注重问题的趣味性,又不失推理严谨,体现了组合几何这门学科的特点,可谓“直觉与抽象齐飞,浅近共深奥一色”。
  《组合几何趣谈》大部分命题定理均给出浅近完整的证明,有的命题还给出多种证明,以触类旁通,开阔思路。各个章节的内容具有相对独立性,读者可选择感兴趣的章节先行阅读,开篇有益,随后必有兴趣细读《组合几何趣谈》,提升对数学乃至其他相关学科的认知与爱好。

目录

目录
丛书序言
前言
1 平面铺砌 001
1.1 铺砌的艺术 001
1.2 阿基米德铺砌的顶点特征 006
1.3 柏拉图多面体 017
1.4 一般多边形铺砌问题 023
2 格点多边形与匹克定理 031
2.1 格点多边形 031
2.2 匹克定理 043
2.3 匹克定理的归纳法证明 045
2.4 匹克定理的加权法证明 063
2.5 原始三角形与欧拉公式 068
2.6 Farey序列与原始三角形面积 077
2.7 含有空洞的格点多边形 081
2.8 平面铺砌与格点多边形面积 084?
2.9 格点多边形与2i+7 094
2.10 圆中的格点数 096
2.11 i=1的格点三角形 098
3 平面凸集 108
3.1 凸集与凸包 108
3.2 美满结局问题 110
3.3 Helly定理 119
3.4 Minkowski定理 129
4 平面点集中的距离问题 134
4.1 Erdos点集问题 138
4.1.1 Erdos七点集 139
4.1.2 Erdos六点集 144
4.1.3 Erdos四点集与Erdos五点集 146
4.2 互异距离 150
4.3 距离的出现次数 154
4.4 最大距离 159
4.5 最小距离 161
4.6 平面等腰集 164
5 平面中的点与直线 169
5.1 有趣的平面划分问题 169
5.2 直线配置问题 180
5.3 Sylvester-Gallai定理 186
5.4 对偶变换 192
5.4.1 基本概念 192
5.4.2 抛物型对偶变换 194
5.5 有限点集生成的角 200
6 黄金三角剖分 202
6.1 黄金分割与斐波那契数列 202
6.2 黄金分割的几何作图 207
6.3 黄金矩形 211
6.4 黄金三角形与三角剖分 215
7 整数边多边形 226
7.1 整数边三角形 226
7.2 T(n)的计算公式 230
7.3 T(n)的递推公式 240
7.4 整数分拆与T(n)的计算公式 242
7.5 整数边等腰三角形 246
7.6 勾股三元组与勾股三角形 248
7.6.1 勾股三元组的构造方法 251
7.6.2 勾股三元组的其他构造方法 258
7.7 勾股三角形与格点多边形 259
7.8 本原勾股三角形的生成树 261
8 三角剖分与卡特兰数 265
8.1 多边形的对角线三角剖分 265
8.2 对角线三角剖分的计数问题 268
8.3 卡特兰数 274
参考文献 286

用户评价

评分

评分

2、家庭与学校的理想主义教育与社会的现实主义教育的尖锐对立。3、私有制下的教育未能解决人的信仰问题。,不管是从网民接受网络教育的意识还是对网上教育的需求都有极大的发展,这是国家教育部门和众多网络教育机构共同努力的结果。相信随着网络基础建设和现代远程教育体系的日趋成熟,我国的网络教育必将在产业化、规模化方面取得更大的成绩。

评分

买得多了~~~买得多了~~~没看

评分

这个书原来没听说过

评分

好~~非常的棒~!!~

评分

大学三年,聊天时有时会听到一些奇怪的言论,比如:“现在学的这些东西有什么用,大学怎么都教这些过时的东西。“ 诚然大陆学校有时会教授一些过时的东西,譬如听说有的学校还教授vb和fortran这样的语言,但我知道这话常常针对数学、通信原理、数电、模电这类的基础理论的,背后的潜台词是:”工作以后都是用现成的芯片、工具,这些几十年上百年历史的理论能有什么用。“ 说这样话的人通常都没有任何学习的觉悟,除了为对付考试啃一啃课本,他们从来不愿意去翻任何知识性书籍,也从来不会好奇他们学的这些基础理论到底有什么作用,他们恨不能直接学一门类似于”嵌入式开发“这种实用的技术,然后最好这门”技术“能一劳永逸管一辈子饭碗呢 。      每一次我都想反驳,可我又没法反驳,因为我也说不清楚这些基础理论到底是如何服务于具体技术的,而它们在实践中又为什么非常重要。所以当读到吴军博士的这本《数学之美》时,我发现这本书解答了我和很多学IT的本科学生长期以来的困惑,连续两天手不释卷读完,深深被书里精彩的内容吸引住了。      个人感觉这本书非常适合信息领域大三、大四阶段的学生阅读,读得早了,会因为有些课程没有学过不能读懂或者读来没有感觉,读得迟了恐怕就会感慨怎么没有早点读到这本书。      我们本科阶段学习的那些"线代、统计、图论、通信原理时常常会怀疑这些理论到底有什么用呢?读了这本书算是长了见识,原来这些理论还可以这么玩。比如计算机自然语言处理可以抽象成非常简单的通信模型和统计学模型,然后一个简单条件概率公式加上一个马尔可夫假设就可以做到机器翻译和语音识别......比如简单的布尔代数就是支撑搜索引擎索引的数学基础,一个漂亮的page rank矩阵乘法迭代加上一个非常符合直觉却有信息论支撑的TF-IDF公式,就可以非常大程度地改善搜索结果的质量......比如余弦公式竟然能够用来做新闻分类!?线性代数除了可以用来解方程组,那些莫名其妙不知干嘛用的特征值、奇异值居然可以用作内容聚合分类!?      读了这本书之后才真心信服,原来这些数学知识除了用作科学家们的头脑游戏以外,确实有非常令人惊叹的实际应用。得益于吴军博士深入浅出的宏观讲解,和恰到好处的细节展现,读者很容易能感受到,数学纵使在计算和证明上有许多繁琐巧妙的细节,但数学模型本身却是高度简洁高度具有概括力的,一些看似毫不相关的领域居然可以用同一个简单的数学模型来构建(比如新闻分类背后的余弦定理)——我想,这大概就是所谓的数学之"美”了吧,它是纷繁技术细节背后最曼妙的骨架,没有一丝累赘,简洁、和谐、有力。      读这本书的过程也是数学建模思维训练的一种训练,相信很多参加过数模训练的同学都会同意数模训练在思考实际问题时带来的好处。阅读本书,更能体会到数学建模思维在工程实践领域中的重要作用。作者在书中数次提到,在工程领域有时候靠瞎凑也能够得到一个凑合可用的结果,但长期来看维护这些瞎凑搭起来的东西代价非常巨大,不仅结构混乱丑陋,而且由于说不清瞎凑背后的道理,在以后的修改维护时也根本无从下手;反之,如果从更高的数学模型层面去抽象问题,去寻找一个正确的模型框架,就可以有条理地慢慢去填充细节,逐渐达到完善。这样的解决方案不仅能达到需求,而且结构清晰道理明了,便于日后的维护和修正(这大概也是数学之美的另一种表现吧)。作者在后记里是这样说明他的写作意图的:“我更希望让做工程的年轻人看到信息技术行业正确的做事情的方法。”作为一个写代码和做实验常常没有厘清框架思路,在实验中用凑来得出正确结果的学生码农,读到这些教诲时,我感到十分汗颜。      关于用数学建模思维去宏观把握问题的研究方向,书中的一个例子让人印象深刻:作者介绍了用信息论的模型来思考如何改善搜索引擎的结果,即改善搜索结果的本质是引入更多的信息,所以在信息不够的时候应该做的是如何多问一问用户,除此之外在细节处玩弄数学公式和算法是不可能有效果的,而更糟的结果是引入人为的干预——它在满足部分用户的需求同时,必然使其他用户得到更糟糕的结果。    这本书同时也是一本科研方法论的启蒙读物。本科阶段,我们接触科研的机会并不多,即使参加了一些大学生科研立项活动,在这方面也不足以得到足够的视野。这本书在介绍信息技术背后数学原理的同时,也讲了很多技术背后科学家们的故事以及他们从事科学研究的方式方法,故事生动翔实富有教益,是一本优秀的科研方法论读物。书中富有启发的故事有不少,比如:通信领域出身的贾里尼克教授采用通信领域的模型方法打破了传统计科基于规则的思维,为自然语言处理建立了统计学模型的框架,这个故事给人的启发是跨界思维和学科融合非常重要,因此很多知识即使看上去没有直接用途,也不要轻下结论,广泛地联系和运用所学的知识,并且用数学思维去抽象和提炼它们,找寻共通点,常常会有了不起的创造。

评分

介绍了概率的一些基本知识,以及一些有趣的应用,其中还包括应用数学对红楼梦的作者进行判断。

评分

  动物、花、船和人都是折纸的创作题材.(折纸一词是源于“折的”“游戏”.)几个世纪来,人们对折纸的热情有增无减.事实上,今天在英国、比利时、法国、意大利、日本、荷兰、新西兰、秘鲁、西班牙和美国(①原注:美国折纸中心联谊会位于纽约西第77街15号,NY10024.英国折纸协会位于斯托克波特(英格兰西北部城市——译者)柴郡桑恩路12号,SK71HQ. )等国家内都有国际折纸协会的区域机构.

评分

送货员态度好,速度快,东西正。

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有