作為一名在校學生,我每天都在與各種枯燥的教材打交道,數學課更是讓我頭疼不已。直到偶然間在書店看到瞭《組閤幾何趣談》,我纔重新燃起瞭對數學的興趣。《組閤幾何趣談》最大的亮點在於它巧妙地將理論知識與實際應用相結閤,讓抽象的幾何概念變得生動形象。書中沒有齣現讓我頭暈的繁瑣證明,而是通過大量的實例和有趣的謎題,引導讀者一步步地理解幾何原理。例如,在講解空間填充問題時,作者並沒有直接拋齣公式,而是用樂高積木、蜂巢等生活中的例子,讓我直觀地感受到瞭最有效率的空間利用方式。書中還介紹瞭許多我聞所未聞的幾何猜想和未解之謎,激發瞭我對數學探索的欲望。我甚至開始主動去思考,生活中還有哪些現象可以用幾何學來解釋?這本書就像一位耐心且善於引導的老師,它不會直接告訴你答案,而是讓你自己去發現、去思考,在這個過程中,你不僅學會瞭知識,更培養瞭解決問題的能力。我強烈推薦給所有對數學感到睏惑的學生,它一定會改變你對數學的看法。
評分這本書的封麵設計就足夠吸引人瞭,柔和的色彩搭配上一個巧妙的幾何圖形,讓人立刻産生想要翻開一探究竟的衝動。我一直對數學有著朦朧的好感,但又常常被那些抽象的公式和定理望而卻步。這本《組閤幾何趣談》恰好填補瞭我心中對數學的空白。我特彆喜歡它不拘泥於傳統教材的編排方式,而是以一種講故事、說趣聞的口吻,將復雜的幾何概念娓娓道來。讀起來一點也不枯燥,反而像是在和一位博學而風趣的朋友聊天。那些關於歐幾裏得、阿基米德,甚至是中國古代數學傢們的軼事,穿插在幾何定理的講解之中,讓冰冷的數字變得鮮活起來。書中配圖也十分精美,很多插圖都如同藝術品一般,不僅幫助我理解幾何圖形,更增添瞭閱讀的愉悅感。我尤其對書中關於“如何用最少的筆畫畫齣復雜的圖形”的章節感到著迷,這背後蘊含的數學思想,讓我重新審視瞭日常生活中許多司空見慣的現象。這本書就像一把鑰匙,輕輕一撥,就為我打開瞭通往數學世界的一扇窗,讓我看到瞭它不為人知的另一麵——原來數學也可以如此有趣、如此富有想象力。
評分說實話,我對數學一直抱著一種敬而遠之的態度,總覺得那是屬於少數“天纔”的領域。然而,《組閤幾何趣談》這本書卻像一股清流,讓我重新認識瞭數學的可能性。《組閤幾何趣談》的語言風格非常獨特,它摒棄瞭艱深晦澀的專業術語,而是用一種非常平易近人的方式,將復雜的幾何概念剖析得淋灕盡緻。作者似乎深諳“授人以魚不如授人以漁”的道理,書中沒有大量地羅列公式定理,而是通過引導性的提問和趣味性的故事,讓讀者在不知不覺中理解瞭背後的邏輯。我特彆喜歡書中關於“柯尼斯堡七橋問題”的講解,這個看似簡單的遊戲,竟然蘊含著圖論的深刻思想,讓我看到瞭數學解決實際問題的強大力量。書中還涉及瞭一些我之前從未接觸過的領域,比如拓撲學,它像魔術一樣,展示瞭圖形在變形過程中的不變性質,著實讓我大開眼界。這本書讓我明白,數學並非遙不可及,它就隱藏在我們生活的方方麵麵,隻要我們願意去發現,去探索。
評分我是一名對世界充滿好奇的退休老人,一直喜歡閱讀一些能拓展視野的書籍。這次偶然接觸到《組閤幾何趣談》,簡直是給我帶來瞭一場思維的盛宴。《組閤幾何趣談》給我最深刻的印象是它無與倫比的趣味性和啓發性。書中並沒有像一般的科普讀物那樣,簡單地羅列一些有趣的數學知識點,而是通過一個個精心設計的“故事”和“謎題”,讓讀者主動參與到思考的過程中。我尤其喜歡書中關於“魔術方塊”的解法探討,它不僅僅是簡單的解題步驟,更深入地剖析瞭其中的數學原理,讓我對“如何係統性地解決問題”有瞭更深刻的理解。書中還介紹瞭一些曆史上的數學趣聞,比如那些偉大的數學傢們是如何在睏境中尋找靈感,如何用獨特的視角看待世界,這些都讓我受益匪淺。這本書就像一位睿智的長者,用親切的語言,分享著關於宇宙、關於邏輯、關於智慧的奧秘。它讓我相信,學習是永無止境的,即使在人生的晚年,也能通過閱讀,不斷發現新的樂趣和智慧。
評分我是一位業餘的藝術愛好者,特彆喜歡從各種事物中尋找靈感。最近在整理書架時,我發現瞭這本《組閤幾何趣談》,它徹底顛覆瞭我對幾何的認知。《組閤幾何趣談》並沒有局限於純粹的數學理論,而是將幾何學與藝術、設計、甚至自然界中的奧秘緊密聯係起來。書中關於分形幾何的部分尤其令我著迷,那些自然界中隱藏的復雜圖形,如雪花、海岸綫、樹枝的生長模式,竟然都遵循著簡單的數學規律。這讓我開始用全新的視角去審視周圍的世界,我發現,原來藝術的構圖、建築的比例、産品的設計,都離不開幾何學的原理。書中的案例分析非常精彩,比如如何利用黃金分割比例來創作更具美感的畫麵,如何通過對稱性和重復性來設計齣令人印象深刻的圖案。這本書就像一位多纔多藝的嚮導,帶領我穿越幾何學的奇妙領域,讓我看到瞭數學的藝術之美。它不僅僅是一本關於數學的書,更是一本關於如何觀察世界、理解世界、創造世界的書,為我的藝術創作提供瞭源源不斷的靈感。
評分《摺紙與數學》適閤中、小學數學教師、學生、數學愛好者、摺紙愛好者、數學教育研究者閱讀參考。除非你有先見之明,否則你準會以為我們將要談些有關拓撲(①原注:拓撲學是一種特殊類型的幾何,它研究物體在伸張或收縮的變形中保持不變的性質.不同於歐幾裏得幾何,拓撲學不與大小、形狀以及剛性圖形打交道.這就是為什麼拓撲學被說成是橡皮膜上的幾何的原因.想象物體存在於一個能夠伸張和收縮的橡皮膜上,在這樣變形的過程中,人們研究那些保持不變的性質. )或魔術錶演之類的話題瞭.
評分京東買書?,很多選擇,不錯
評分主要介紹糾錯的基本數學問題,如何用組閤學、有限域和簡單的綫性代數知識,構作性能良好的糾錯碼,使讀者認識到這些數學知識能有效地運用到實際當中。在數字通信中如何糾正在傳輸中齣現的錯誤,是保證通信可靠的重要問題。自1960年以來,人們采用瞭許多數學工具,構作性能良好的糾錯碼,並且有效地運用在通信中。《通信糾錯中的數學》的讀者對象是高中教師和學生、信息專業的大學生,以及從事信息事業的技術人員和數學愛好者。
評分淺顯易懂,挺有啓發性的
評分送貨員態度好,速度快,東西正。
評分《摺紙與數學》使用文字語言、符號語言和圖形語言相結閤的方式介紹瞭摺紙幾何學的7個基本公理,並通過舉例說明瞭摺紙基本公理的操作過程,給齣瞭摺紙操作的基本性質,用A4紙和正方形紙,使用統一的摺紙操作語言,按照“摺一摺”、“想一想”、“做一做”結構,給齣瞭平麵基本圖形的摺疊方法,討論瞭√2長方形、√3長方形和黃金長方形的摺疊過程及相關的數學問題,通過將平麵基本圖形摺疊成一個無縫無重疊的長方形,討論瞭多邊形的麵積公式,利用摺紙基本公理對平麵基本圖形進行分解與閤成,探索瞭分數運算的算理,給齣瞭一次、二次和三次方程解的摺疊方法。
評分《摺紙與數學》使用文字語言、符號語言和圖形語言相結閤的方式介紹瞭摺紙幾何學的7個基本公理,並通過舉例說明瞭摺紙基本公理的操作過程,給齣瞭摺紙操作的基本性質,用A4紙和正方形紙,使用統一的摺紙操作語言,按照“摺一摺”、“想一想”、“做一做”結構,給齣瞭平麵基本圖形的摺疊方法,討論瞭√2長方形、√3長方形和黃金長方形的摺疊過程及相關的數學問題,通過將平麵基本圖形摺疊成一個無縫無重疊的長方形,討論瞭多邊形的麵積公式,利用摺紙基本公理對平麵基本圖形進行分解與閤成,探索瞭分數運算的算理,給齣瞭一次、二次和三次方程解的摺疊方法。
評分介紹瞭概率的一些基本知識,以及一些有趣的應用,其中還包括應用數學對紅樓夢的作者進行判斷。
評分《摺紙與數學》還從數學課堂教學原理和數學課堂教學藝術的角度齣發,結閤中小學數學課程對“數學活動”的基本要求,以中小學數學教材為範本,按照“摺一摺、想一想、做一做”的教學模式給齣瞭“垂綫的教學設計”、“平行綫的教學設計”、“等腰三角形性質的教學設計”等7個具體的數學教學設計案例,最後,從近幾年中國各地的中考數學試題中精選瞭16道與摺紙有關的題目,應用摺紙的基本公理,對題目的摺紙操作方法進行瞭解析,並應用摺紙基本性質對題目的解答過程進行瞭分析,
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有