白话深度学习与TensorFlow 计算机与互联网 书籍|6241653

白话深度学习与TensorFlow 计算机与互联网 书籍|6241653 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
高扬,卫峥 著

下载链接在页面底部
点击这里下载
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-27

图书介绍


店铺: 互动出版网图书专营店
出版社: 机械工业出版社
ISBN:9787111574576
商品编码:14774395893
出版时间:2017-08-01


类似图书 点击查看全场最低价

相关图书





图书描述

 书[0名0]:  白话深度[0学0]习与TensorFlow|6241653
 图书定价: 69元
 图书作者: 高扬;卫峥
 出版社:  机械工业出版社
 出版日期:  2017/8/1 0:00:00
 ISBN号: 9787111574576
 开本: 16开
 页数: 0
 版次: 1-1
 作者简介
西山居的[0大0]数据架构师与[0大0]数据专家,有多年编程经验(多年日本和澳洲工作经验)、多年[0大0]数据架构设计与数据分析、处理经验,目前负责西山居的市场战略与产[0品0]战略。专注于[0大0]数据系统架构以及变现研究。擅长数据挖掘、数据建模、关系型数据库应用(Hadoop、Spark、Cassandra、Prestodb应用)。负责西山居紫霞系统——[0大0]数据日志处理系统的系统架构与设计工作。同时,也是重庆工[0商0][0大0][0学0]管理科[0学0]与工程专业,硕士研究生事业导师。

 内容简介
基础篇(1-3章):介绍深度[0学0]习的基本概念和Tensorflow的基本介绍。原理与实践篇(4-8章):[0大0]量的关于深度[0学0]习中BP、CNN以及RNN网络等概念的数[0学0][0知0]识解析,加以更朴素的语言与类比,使得非数[0学0]专业的程序员还是能够比较容易看懂。扩展篇(9-13章):介绍新增的深度[0学0]习网络变种与较新的深度[0学0]习特性,并给出有趣的深度[0学0]习应用。读完本书,基本具备了搭建全套Tensorflow应用环境的能力,掌握深度[0学0]习算[0法0]和思路,以及进行一般性的文章分类、音频分类或视频分类的能力。
 目录

本书赞誉

前 言
基 础 篇
[0第0]1章 机器[0学0]习是什么 2
1.1 聚类 4
1.2 回归 5
1.3 分类 8
1.4 综合应用 10
1.5 小结 14
[0第0]2章 深度[0学0]习是什么 15
2.1 神经网络是什么 15
2.1.1 神经元 16
2.1.2 激励函数 19
2.1.3 神经网络 24
2.2 深度神经网络 25
2.3 深度[0学0]习为什么这么强 28
2.3.1 不用再提取特征 28
2.3.2 处理线性不可分 29
2.4 深度[0学0]习应用 30
2.4.1 围棋机器人——AlphaGo 30
2.4.2 被教坏的少女——Tai.ai 32
2.4.3 本田公司的[0大0]宝贝——
ASIMO 33
2.5 小结 37
[0第0]3章 TensorFlow框架特性与安装 38
3.1 简介 38
3.2 与其他框架的对比 39
3.3 其他特点 40
3.4 如何选择好的框架 44
3.5 安装TensorFlow 45
3.6 小结 46
原理与实践篇
[0第0]4章 前馈神经网络 50
4.1 网络结构 50
4.2 线性回归的训练 51
4.3 神经网络的训练 75
4.4 小结 79
[0第0]5章 手写板功能 81
5.1 MNIST介绍 81
5.2 使用TensorFlow完成实验 86
5.3 神经网络为什么那么强 92
5.3.1 处理线性不可分 93
5.3.2 挑战“与或非” 95
5.3.3 丰富的VC——强[0大0]的空间
划分能力 98
5.4 验证集、测试集与防止过拟合 99
5.5 小结 102
[0第0]6章 卷积神经网络 103
6.1 与全连接网络的对比 103
6.2 卷积是什么 104
6.3 卷积核 106
6.4 卷积层其他参数 108
6.5 池化层 109
6.6 典型CNN网络 110
6.7 图片识别 114
6.8 输出层激励函数——SOFTMAX 116
6.8.1 SOFTMAX 116
6.8.2 交叉熵 117
6.9 小试牛刀——卷积网络做图片分类 124
6.10 小结 138
[0第0]7章 综合问题 139
7.1 并行计算 139
7.2 随机梯度下降 142
7.3 梯度消失问题 144
7.4 归一化 147
7.5 参数初始化问题 149
7.6 正则化 151
7.7 其他[0超0]参数 155
7.8 不的模型 156
7.9 DropOut 157
7.10 小结 158
[0第0]8章 循环神经网络 159
8.1 隐马尔可夫模型 159
8.2 RNN和BPTT算[0法0] 163
8.2.1 结构 163
8.2.2 训练过程 163
8.2.3 艰难的误差传递 165
8.3 LSTM算[0法0] 167
8.4 应用场景 171
8.5 实践案例——自动文本生成 174
8.5.1 RNN工程代码解读 174
8.5.2 利用RNN[0学0]习莎士比亚剧本 183
8.5.3 利用RNN[0学0]习维基百科 184
8.6 实践案例——聊天机器人 185
8.7 小结 196
扩 展 篇
[0第0]9章 深度残差网络 198
9.1 应用场景 198
9.2 结构解释与数[0学0]推导 200
9.3 拓扑解释 205
9.4 Github示例 207
9.5 小结 207
[0第0]10章 受限玻尔兹曼机 209
10.1 结构 209
10.2 逻辑回归 210
10.3 [0大0]似然度 212
10.4 [0大0]似然度示例 214
10.5 损失函数 215
10.6 应用场景 216
10.7 小结 216
[0第0]11章 强化[0学0]习 217
11.1 模型核心 218
11.2 马尔可夫决策过程 219
11.2.1 用游戏开刀 221
11.2.2 准备工作 223
11.2.3 训练过程 224
11.2.4 问题 226
11.2.5 Q-Learning算[0法0] 228
11.3 深度[0学0]习中的Q-Learning——DQN 231
11.3.1 OpenAI Gym 234
11.3.2 Atari游戏 237
11.4 小结 238
[0第0]12章 对抗[0学0]习 239
12.1 目的 239
12.2 训练模式 240
12.2.1 二元[0极0]小[0极0][0大0]博弈 240
12.2.2 训练 242
12.3 CGAN 244
12.4 DCGAN 247
12.5 小结 252
[0第0]13章 有趣的深度[0学0]习应用 254
13.1 人脸识别 254
13.2 作诗姬 259
13.3 梵高附体 264
13.3.1 网络结构 265
13.3.2 内容损失 268
13.3.3 风格损失 270
13.3.4 系数比例 271
13.3.5 代码分析 272
13.4 小结 279
附录A VMware Workstation的安装 280
附录B Ubuntu虚拟机的安装 284
附录C Python语言简介 290
附录D 安装Thea[0no0] 296
附录E 安装Keras 297
附录F 安装CUDA 298
参考文献 303




白话深度学习与TensorFlow 计算机与互联网 书籍|6241653 下载 mobi epub pdf txt 电子书 格式

白话深度学习与TensorFlow 计算机与互联网 书籍|6241653 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

白话深度学习与TensorFlow 计算机与互联网 书籍|6241653 下载 mobi pdf epub txt 电子书 格式 2024

白话深度学习与TensorFlow 计算机与互联网 书籍|6241653 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

快递慢的要死,更气人的是还得自己去取!!!

评分

浅显易懂,贼好

评分

可以

评分

书挺好的,适合初学者。

评分

评分

浅显易懂,贼好

评分

书挺好的,适合初学者。

评分

一本数学。

评分

类似图书 点击查看全场最低价

白话深度学习与TensorFlow 计算机与互联网 书籍|6241653 mobi epub pdf txt 电子书 格式下载 2024


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.cndgn.com All Rights Reserved. 新城书站 版权所有