YL9551 9787111575214 9787121306594 9787121305146
量化交易之路:用Python做股票量化分析
定价:¥89.00
作者: 阿布
出版社:机械工业出版社
ISBN:9787111575214
上架时间:2017-8-25
出版日期:2017 年8月
开本:16开
版次:1-1
所属分类:计算机
目录
前言
第1部分 对量化交易的正确认识
第1章 量化引言 2
1.1 什么是量化交易 2
1.2 量化交易:投资?投机?赌博? 3
1.3 量化交易的优势 4
1.3.1 避免短线频繁交易 4
1.3.2 避免逆势操作 5
1.3.3 避免重仓交易 5
1.3.4 避免对胜率的盲目追求 6
1.3.5 确保交易策略的执行 6
1.3.6 独立交易及对结果负责的信念 6
1.3.7 从历史验证交易策略是否可行 7
1.3.8 寻找交易策略的*优参数 7
1.3.9 减少无意义的工作及干扰 7
1.4 量化交易的正确认识 8
1.4.1 不要因循守旧,认为量化交易是邪门歪道 8
1.4.2 不要异想天开,认为量化交易有神奇的魔法 8
1.4.3 不要抱有不劳而获的幻想 9
1.4.4 不要盲目追求量化策略的复杂性 9
1.4.5 认清市场,认清自己,知己知彼,百战不殆 10
1.5 量化交易的目的 11
第2部分 量化交易的基础
第2章 量化语言——Python 14
2.1 基础语法与数据结构 15
2.1.1 基本类型和语法 15
2.1.2 字符串和容器 17
2.2 函数 20
2.2.1 函数的使用和定义 20
2.2.2 lambda函数 21
2.2.3 高阶函数 22
2.2.4 偏函数 25
2.3 面向对象 25
2.3.1 类的封装 26
2.3.2 继承和多态 30
2.3.3 静态方法、类方法与属性 34
2.4 性能效率 38
2.4.1 itertools的使用 38
2.4.2 多进程 VS 多线程 41
2.4.3 使用编译库提高性能 43
2.5 代码调试 45
2.6 本章小结 48
第3章 量化工具——NumPy 49
3.1 并行化思想与基础操作 49
3.1.1 并行化思想 49
3.1.2 初始化操作 50
3.1.3 索引选取和切片选择 51
3.1.4 数据转换与规整 52
3.1.5 逻辑条件进行数据筛选 53
3.1.6 通用序列函数 54
3.1.7 数据本地序列化操作 57
3.2 基础统计概念与函数使用 57
3.2.1 基础统计函数的使用 57
3.2.2 基础统计概念 60
3.3 正态分布 62
3.3.1 正态分布基础概念 62
3.3.2 实例1:正态分布买入策略 64
3.4 伯努利分布 66
3.4.1 伯努利分布基础概念 67
3.4.2 实例2:如何在交易中获取优势 67
3.5 本章小结 71
第4章 量化工具——pandas 72
4.1 基本操作方法 72
4.1.1 DataFrame构建及方法 72
4.1.2 索引行列序列 73
4.1.3 金融时间序列 74
4.1.4 Series构建及方法 75
4.1.5 重采样数据 76
4.2 基本数据分析示例 78
4.2.1 总览分析数据 79
4.2.2 索引选取和切片选择 80
4.2.3 逻辑条件进行数据筛选 82
4.2.4 数据转换与规整 84
4.2.5 数据本地序列化操作 86
4.3 实例1:寻找股票异动涨跌幅阀值 87
4.3.1 数据的离散化 88
4.3.2 concat、append和merge的使用 89
4.4 实例2:星期几是这个股票的“好日子” 91
4.4.1 构建交叉表 92
4.4.2 构建透视表 94
4.5 实例3:跳空缺口 95
4.6 pandas三维面板的使用 98
4.7 本章小结 101
第5章 量化工具——可视化 102
5.1 使用Matplotlib可视化数据 102
5.1.1 Matplotlib可视化基础 102
5.1.2 Matplotlib子画布及loc的使用 104
5.1.3 K线图的绘制 105
5.2 使用Bokeh交互可视化 106
5.3 使用pandas可视化数据 107
5.3.1 绘制股票的收益及收益波动情况 107
5.3.2 绘制股票的价格与均线 109
5.3.3 其他pandas统计图形种类 110
5.4 使用Seaborn可视化数据 112
5.5 实例1:可视化量化策略的交易区间及卖出原因 115
5.6 实例2:标准化两个股票的观察周期 120
5.7 实例3:黄金分割线 124
5.7.1 黄金分割线的定义方式 124
5.7.2 多维数据绘制示例 127
5.8 技术指标的可视化 130
5.8.1 MACD指标的可视化 131
5.8.2 ATR指标的可视化 132
5.9 本章小结 133
第6章 量化工具——数学 134
6.1 回归与插值 134
6.1.1 线性回归 135
6.1.2 多项式回归 137
6.1.3 插值 138
6.2 蒙特卡罗方法与凸优化 139
6.2.1 你一生的追求到底能带来多少幸福 140
6.2.2 使用蒙特卡罗方法计算怎样度过一生*幸福 149
6.2.3 凸优化基础概念 152
6.2.4 全局求解怎样度过一生*幸福 153
6.2.5 非凸函数计算怎样度过一生*幸福 154
6.2.6 标准凸函数求*优 157
6.3 线性代数 159
6.3.1 矩阵基础知识 160
6.3.2 特征值和特征向量 162
6.3.3 PCA和SVD理论知识 163
6.3.4 PCA和SVD使用实例 164
6.4 本章小结 168
第3部分 量化交易系统的开发
第7章 量化系统——入门 170
7.1 趋势跟踪与均值回复 170
7.1.1 趋势跟踪和均值回复的周期重叠性 171
7.1.2 实例1:均值回复策略 176
7.1.3 实例2:趋势跟踪策略 184
7.2 仓位控制管理 188
7.2.1 凯利公式 189
7.2.2 一只股票的时间简史 190
7.2.3 三只小猪股票投资的故事 195
7.3 本章小结 202
第8章 量化系统——开发 203
8.1 abu量化系统择时 204
8.1.1 买入因子的实现 204
8.1.2 卖出因子的实现 210
8.1.3 滑点买入、卖出价格确定及策略实现 221
8.1.4 多只股票使用相同的因子进行择时 226
8.1.5 自定义仓位管理策略的实现 229
8.1.6 多只股票使用不同的因子进行择时 230
8.1.7 使用并行来提升择时的运行效率 231
8.2 abu量化系统选股 234
8.2.1 选股因子的实现 234
8.2.2 多个选股因子并行执行 240
8.2.3 使用并行来提升选股的运行效率 241
8.3 本章小结 242
第9章 量化系统——度量与优化 243
9.1 度量的基本使用方法 243
9.2 度量的基础 247
9.2.1 度量的基础概念 247
9.2.2 度量的可视化 250
9.3 基于Grid Search寻找因子*优参数 253
9.3.1 参数取值范围 253
9.3.2 参数进行排列组合 254
9.3.3 Grid Search寻找*优参数 255
9.3.4 度量结果的评分 258
9.3.5 不同权重的评分 262
9.4 资金限制对度量的影响 266
9.5 输入中文自动生成交易策略 272
9.6 本章小结 276
第4部分 机器学习在量化交易中的实战...............
第1 部分Python 入门 1
第1 章Python 简介与安装使用 2
1.1 Python 概述
1.2 Python 的安装
1.2.1 下载安装Python 执行文件
1.2.2 下载安装Anaconda
1.2.3 多种Python 版本并存
1.3 Python 的简单使用
1.4 交互对话环境IPython
1.4.1 IPython 的安装
1.4.2 IPython 的使用
1.4.3 IPython 功能介绍
第2 章Python 代码的编写与执行
2.1 创建Python 脚本文件
2.1.1 记事本
2.1.2 Python 默认的IDLE 环境
2.1.3 专门的程序编辑器
2.2 执行.py 文件
2.2.1 IDLE 环境自动执行
2.2.2 在控制台cmd 中执行
2.2.3 在Annaconda Prompt 中执行
2.3 Python 编程小技巧
2.3.1 Python 行
2.3.2 Python 缩进
第3 章Python 对象类型初探 23
3.1 Python 对象
3.2 变量命名规则
3.3 数值类型
3.3.1 整数
3.3.2 浮点数
3.3.3 布尔类型
3.3.4 复数
3.4 字符串
3.5 列表
3.6 可变与不可变
3.7 元组
3.8 字典
3.9 集合
第4 章Python 集成开发环境:Spyder 介绍 36
4.1 代码编辑器
4.2 代码执行Console
4.3 变量查看与编辑
4.4 当前工作路径与文件管理
4.5 帮助文档与在线帮助
4.6 其他功能
第5 章Python 运算符与使用 44
5.1 常用运算符
5.1.1 算术运算符
5.1.2 赋值运算符
5.1.3 比较运算符
5.1.4 逻辑运算符
5.1.5 身份运算符
5.1.6 成员运算符
5.1.7 运算符的优先级
5.2 具有运算功能的内置函数
第6 章Python 常用语句 55
6.1 赋值语句
6.1.1 赋值含义与简单赋值
6.1.2 多重赋值
6.1.3 多元赋值
6.1.4 增强赋值
6.2 条件语句
6.3 循环语句
6.3.1 for 循环
6.3.2 while 循环
6.3.3 嵌套循环
6.3.4 break、continue 等语句
第7 章函数
7.1 函数的定义与调用
7.2 函数的参数
7.3 匿名函数
7.4 作用域
第8 章面向对象
8.1 类
8.2 封装
8.3 继承(Inheritance)
第9 章Python 标准库与数据操作
9.1 模块、包和库
9.1.1 模块
9.1.2 包
9.1.3 库
9.2 Python 标准库介绍
9.3 Python 内置数据类型与操作
9.3.1 序列类型数据操作
9.3.1.1 list 类型与操作
9.3.1.2 tuple 类型与操作
9.3.1.3 range 类型与操作
9.3.1.4 字符串操作
9.3.2 字典类型操作
9.3.3 集合操作
第10 章常用第三方库:Numpy 库与多维数组
10.1 NumPy 库
10.2 创建数组
10.3 数组元素索引与切片
10.4 数组运算
第11 章常用第三方库:Pandas 与数据处理
11.1 Series 类型数据
11.1.1 Series 对象的创建
11.1.2 Series 对象的元素提取与切片
11.1.2.1 调用方法提取元素
11.1.2.2 利用位置或标签提取元素与切片
11.1.3 时间序列
11.2 DataFrame 类型数据
11.2.1 创建DataFrame 对象
11.2.2 查看DataFrame 对象
11.2.3 DataFrame 对象的索引与切片
11.2.4 DataFrame 的操作
11.2.5 DataFrame 的运算
11.3 数据规整化
11.3.1 缺失值的处理
11.3.1.1 缺失值的判断
11.3.1.2 选出不是缺失值的数据
11.3.2 缺失值的填充
11.3.3 缺失值的选择删除
11.3.4 删除重复数据.............
本书是国内较早关于Python大数据与量化交易的原创图书,配合zwPython开发平台和zwQuant开源量化软件学习,是一套完整的大数据分析、量化交易的学习教材,可直接用于实盘交易。本书有三大特色:一,以实盘个案分析为主,全程配有Python代码;二,包含大量的图文案例和Python源码,无须**编程基础,懂Excel即可开始学习;三,配有**的zwPython集成开发平台、zwQuant量化软件和zwDat数据包。
本书内容源自笔者的原版教学课件,虽然限于篇幅和载体,省略了视频和部分环节,但核心内容都有保留,配套的近百套Python教学程序没有进行任何删减。考虑到广大入门读者的需求,笔者在各个核心函数环节增添了函数流程图。
第1章 从故事开始学量化 1
1.1 亿万富翁的“神奇公式” 2
1.1.1 案例1-1:亿万富翁的“神奇公式” 2
1.1.2 案例分析:Python图表 5
1.1.3 matplotlib绘图模块库 7
1.1.4 案例分析:style绘图风格 10
1.1.5 案例分析:colormap颜色表 12
1.1.6 案例分析:颜色表关键词 14
1.1.7 深入浅出 17
1.2 股市“一月效应” 18
1.2.1 案例1-2:股市“一月效应” 18
1.2.2 案例分析:“一月效应”计算 19
1.2.3 案例分析:“一月效应”图表分析 24
1.2.4 案例分析:颜色表效果图 26
1.2.5 “一月效应”全文注解版Python源码 27
1.2.6 大数据?宏分析 34
1.3 量化交易流程与概念 36
1.3.1 数据分析I2O流程 36
1.3.2 量化交易不是高频交易、自动交易 37
1.3.3 小资、小白、韭菜 38
1.3.4 **与业余 38
1.4 用户运行环境配置 42
1.4.1 程序目录结构 43
1.4.2 金融股票数据包 44
1.5 Python实战操作技巧 46
1.5.1 模块检测 46
1.5.2 Spyder编辑器界面设置 47
1.5.3 代码配色技巧 48
1.5.4 图像显示配置 50
1.5.5 Python2、Python 3双版本双开模式 51
1.5.6 单版本双开、多开模式 52
1.5.7 实战胜于一切 54
1.6 量化、中医与西医 54
第2章 常用量化技术指标与框架 56
2.1 案例2-1:SMA均线策略 56
2.1.1 案例要点与事件编程 58
2.1.2 量化程序结构 61
2.1.3 main程序主入口 61
2.1.4 KISS法则 63
2.2 Python量化系统框架 64
2.2.1 量化行业关键词 64
2.2.2 国外主流Python量化网站 65
2.2.3 我国主流Python量化网站 67
2.2.4 主流Python量化框架 70
2.3 常用量化软件包 78
2.3.1 常用量化软件包简介 79
2.3.2 案例2-2:模块库列表 80
2.4 常用量化技术指标 82
2.4.1 TA-Lib金融软件包 83
2.4.2 案例2-3:MA均线函数调用 84
2.4.3 TA-Lib函数调用 86
2.4.4 量化分析常用指标 88
2.5 **量化策略 90
2.5.1 阿尔法(Alpha)策略 90
2.5.2 Beta策略 92
2.5.3 海龟交易法则 93
2.5.4 ETF套利策略 95
2.6 常用量化策略 95
2.6.1 动量交易策略 96
2.6.2 均值回归策略 97
2.6.3 其他常用量化策略 98
2.7 起点与终点 100
第3章 金融数据采集整理 101
3.1 常用数据源API与模块库 102
3.1.1 大数据综合API 102
3.1.2 **财经数据API 103
3.1.3 **数据模块库 104
3.2 案例3-1:zwDatX数据类 104
3.3 美股数据源模块库 108
3.4 开源文档库Read the Docs 109
3.5 案例3-2:下载美股数据 110
3.6 财经数据源模块库TuShare 113
3.6.1 沪深股票列表 115
3.6.2 案例3-3:下载股票代码数据 116
3.6.3 CSV文件处理 119
3.7 历史数据 121
3.7.1 历史行情 121
3.7.2 案例3-4:下载近期股票数据 124
3.7.3 历史复权数据 130
3.7.4 案例3-5:下载历史复权数据 131
3.8 其他交易数据 134
3.9 zwDat**大股票数据源与数据更新 143
3.9.1 案例3-6:A股基本概况数据下载 144
3.9.2 案例3-7:A股交易数据下载 146
3.9.3 案例3-8:A股指数行情数据下载 150
3.9.4 案例3-9:美股交易数据下载 151
3.10 数据归一化处理 153
3.10.1 中美股票数据格式差异 153
3.10.2 案例3-10:数据格式转化 154
3.10.3 案例3-11:A股策略PAT实盘分析 156
3.10.4 案例3-12:数据归一化 158
3.11 为有源头活水来 160
第4章 PAT案例汇编 162
4.1 投资组合与回报率 163
4.1.1 案例4-1:下载多组美股数据 163
4.1.2 案例4-2:投资组合收益计算 165
4.2 SMA均线策略 168
4.2.1 SMA简单移动平均线 168
4.2.2 案例4-3:原版SMA均线策略 169
4.2.3 案例4-4:增强版SMA均线策略 173
4.2.4 案例4-5:A股版SMA均线策略 174
4.3 均线交叉策略 175
4.3.1 案例4-6:均线交叉策略 176
4.3.2 案例4-7:A股版均线交叉策略 178
4.4 VWAP动量策略 181
4.4.1 案例4-8:VWAP动量策略 182
4.4.2 案例4-9:A股版VWAP动量策略 183
4.5 布林带策略 183
4.5.1 案例4-10:布林带策略 185
4.5.2 案例4-11:A股版布林带策略 186
4.6 RSI2策略 188
4.6.1 案例4-12:RSI2策略 190
4.6.2 案例4-13:A股版RSI2策略 190
4.7 案例与传承 194
第5章 zwQuant整体架构 196
5.1 发布前言 196
5.2 功能简介 197
5.2.1 目录结构 197
5.2.2 安装与更新 198
5.2.3 模块说明 199
5.2.4 zwSys模块:系统变量与类定义 200
5.2.5 zwTools模块:常用(非量化)工具函数 201
5.2.6 zwQTBox:常用“量化”工具函数集 201
5.2.7 zwQTDraw.py:量化绘图工具函数 203
5.2.8 zwBacktest:回溯测试工具函数 203
5.2.9 zwStrategy:策略工具函数 203
5.2.10 zw_TA-Lib:金融函数模块 204
5.3 示例程序 207
5.4 常用量化分析参数 208
5.5 回溯案例:对标测试 209
5.5.1 对标测试1:投资回报参数 209
5.5.2 对标测试2:VWAP策略 211
5.6 回报参数计算 214
5.7 主体框架 220
5.7.1 stkLib内存数据库 220
5.7.2 Bars数据包 221
5.7.3 案例:内存数据库&数据包 222
5.7.4 qxLib、xtrdLib 227
5.7.5 案例5-1:qxLib数据 228
5.7.6 量化系统的价格体系 230
5.7.7 数据预处理 231
5.7.8 绘图模板 234
5.8 新的起点 236
第6章 模块详解与实盘数据 237
6.1 回溯流程 238
6.1.1 案例6-1:投资回报率 238
6.1.2 代码构成 242
6.1.3 运行总流程 243
6.2 运行流程详解 244
6.2.1 设置股票数据源 244
6.2.2 设置策略参数 247
6.2.3 dataPre数据预处理 249
6.2.4 绑定策略函数 253
6.2.5 回溯测试:zwBackTest 253
6.2.6 输出回溯结果数据、图表 258
6.3 零点策略 260
6.3.1 mul多个时间点的交易&数据 263
6.3.2 案例6-2:多个时间点交易 264
6.4 不同数据源与格式修改 270
6.4.1 案例6-3:数据源修改 272
6.4.2 数据源格式修改 274
6.5 金融数据包与实盘数据更新 275
6.5.1 大盘指数文件升级 276
6.5.2 实盘数据更新 277
6.5.3 案例6-4:A股实盘数据更新 277
6.5.4 案例6-5:大盘指数更新 279
6.6 稳定1 281
第7章 量化策略库 282
7.1 量化策略库简介 282
7.1.1 量化系统的三代目 283
7.1.2 通用数据预处理函数 283
7.2 SMA均线策略 286
7.2.1 案例7-1:SMA均线策略 286
7.2.2 实盘下单时机与推荐 289
7.2.3 案例7-2:实盘SMA均线策略 290
7.3 CMA均线交叉策略 294
7.3.1 案例7-3:均线交叉策略 294
7.3.2 对标测试误差分析 296
7.3.3 案例7-4:CMA均线交叉策略修改版 299
7.3.4 人工优化参数 300
7.4 VWAP策略 301
7.4.1 案例7-5:VWAP策略 301
7.4.2 案例7-6:实盘VWAP策略 303
7.5 BBands布林带策略 304
7.5.1 案例7-7:BBands布林带策略 305
7.5.2 案例7-8:实盘BBands布林带策略 306
7.6 大道至简1 1 307
第8章 海龟策略与自定义扩展 309
8.1 策略库 309
8.1.1 自定义策略 310
8.1.2 海龟投资策略 310
8.2 tur海龟策略v1:从零开始 311
8.3 案例8-1:海龟策略框架 311
8.4 tur海龟策略v2:策略初始化 312
8.5 案例8-2:策略初始化 312
8.6 tur海龟策略v3:数据预处理 313
8.7 案例8-3:数据预处理 314
8.8 tur海龟策略v4:策略分析 317
8.9 案例8-4:策略分析 317
8.10 tur海龟策略v5:数据图表输出 320
8.10.1 案例8-5:图表输出 320
8.10.2 参数优化 324
8.10.3 案例8-6:参数优化 324
8.11 tur海龟策略v9:加入策略库 325
8.12 案例8-7:入库 326
8.13 庖丁解牛 328...........
评分
评分
评分
评分
评分
评分
评分
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有