The Road to Reality 真實之路 英文原版 [平裝]

The Road to Reality 真實之路 英文原版 [平裝] pdf epub mobi txt 電子書 下載 2025

Roger Penrose(羅傑·彭羅斯) 著
圖書標籤:
  • 物理學
  • 數學
  • 宇宙學
  • 理論物理
  • 科普
  • 羅傑·彭羅斯
  • 現實
  • 時空
  • 量子力學
  • 相對論
想要找書就要到 新城書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: Knopf Group
ISBN:9780679776314
商品編碼:19041766
包裝:平裝
齣版時間:2007-01-09
用紙:膠版紙
頁數:1136
正文語種:英文
商品尺寸:15.75x4.83x23.37cm;1.18kg

具體描述

內容簡介

Roger Penrose, one of the most accomplished scientists of our time, presents the only comprehensive and comprehensible account of the physics of the universe. From the very first attempts by the Greeks to grapple with the complexities of our known world to the latest application of infinity in physics, The Road to Reality carefully explores the movement of the smallest atomic particles and reaches into the vastness of intergalactic space. Here, Penrose examines the mathematical foundations of the physical universe, exposing the underlying beauty of physics and giving us one the most important works in modern science writing.

作者簡介

Roger Penrose is Emeritus Rouse Ball Professor of Mathematics at Oxford University. He has received a number of prizes and awards, including the 1988 Wolf Prize for physics, which he shared with Stephen Hawking for their joint contribution to our understanding of the universe. His books include The Emperor's New Mind, Shadows of the Mind, and The Nature of Space and Time, which he wrote with Hawking. He has lectured extensively at universities throughout America. He lives in Oxford.

目錄

Preface
Acknowledgements
Notation
Prologue
1 The roots of science
 1.1 The cluest for the forces that shape the world
 1.2 Mathematical truth
 1.3 Is Plato's mathematical world 'real'?
 1.4 Three worlds and three deep mysteries
 1.5 The Good, the True, and the Beautiful
2 An ancient theorem and a modern question
 2.1 The Pythagorean theorem
 2.2 Euclid's postulates
 2.3 Similar-areas proof of the Pythagorean theorem
 2.4 Hyperbolic geometry: conformal picture
 2.5 Other representations of hyperbolic geometry
 2.6 Historical aspects of hyperbolic geometry
 2.7 Relation to physical space
3 Kinds of number in the physical world
 3.1 A Pythagorean catastrophe?
 3.2 The real-number system
 3.3 Real numbers in the physical world
 3.4 Do natural numbers need the physical world?
 3.5 Discrete numbers in the physical world
4 Magical complex numbers
 4.1 The magic number 'i'
 4.2 Solving equations with complex numbers
 4.3 Convergence of power series
 4.4 Caspar Wessel's complex plane
 4.5 How to construct the Mandelbrot set
5 Geometry of logarithms, powers, and roots
 5.1 Geometry of complex algebra
 5.2 The idea of the complex logarithm
 5.3 Multiple valuedness, natural logarithms
 5.4 Complex powers
 5.5 Some relations to modern particle physics
6 Real-number calculus
 6.1 What makes an honest function?
 6.2 Slopes of functions
 6.3 Higher derivatives; C~-smooth functions
 6.4 The 'Eulerian' notion of a function?
 6.5 The rules of differentiation
 6.6 Integration
7 Complex-number calculus
 7.1 Complex smoothness; holomorphic functions
 7.2 Contour integration
 7.3 Power series from complex smoothness
 7.4 Analytic continuation
8 Riemann surfaces and complex mappings
 8.1 The idea of a Riemann surface
 8.2 Conformal mappings
 8.3 The Riemann sphere
 8.4 The genus of a compact Riemann surface
 8.5 The Riemann mapping theorem
9 Fourier decomposition and hyperfunctions
 9.1 Fourier series
 9.2 Functions on a circle
 9.3 Frequency splitting on the Riemann sphere
 9.4 The Fourier transform
 9.5 Frequency splitting from the Fourier transform
 9.6 What kind of function is appropriate?
 9.7 Hyperfunctions
10 Surfaces
11 Hypercomplex numbers
12 Manifolds of n dimensions
13 Symmetry groups
14 Calculus on manifolds
15 Fibre bundles and gauge connections
16 The ladder of infinity
17 Spacetime
18 Minkowskian geometry
19 The classical fields of maxwell and Einstein
20 Lagrangians and Hamiltonians
21 The quantum particle
22 Quantum algebra, geometry, and spin
23 The entangled quantum world
24 Dirac's electron and antiparticles
25 The standard model of particle physics
26 Quantum field theory
27 The Big Bang and its thermodynamic legacy
28 Speculative theories of the early universe
29 The measurement paradox
30 Gravity's rode in quantum state reduction

用戶評價

評分

京東購書很實惠

評分

評分

評分

  湖風吹得二人的衣衫簌簌作響,皇帝的眼神凝在藍徽容身上,良久,方嗬嗬一笑:“果然是清娘的女兒,這麼多年,再沒有人敢這樣與朕對望瞭!”

評分

這一學說認為,宇宙誕生初期,溫度非常高,隨著宇宙的膨脹,溫度開始降低,中子、質子、電子産生瞭。此後,這些基本粒子就形成瞭各種元素,這些物質微粒相互吸引、融閤,形成越來越大的團塊,這些團塊又逐漸演化成星係、恒星、行星,在個彆的天體上還齣現瞭生命現象,能夠認識宇宙的人類最終誕生瞭。

評分

1.京東商城上的所有商品信息、客戶評價、商品谘詢、網友討論等內容,是京東商城重要的經營資源,未經許可,禁止非法轉載使用。

評分

圖書館的館藏稱不上豐富,卻都十分有價值,包括聖保羅的“使徒書信”手稿(the Epistles of St. Paul)、牛頓自藏的《自然原理》初版、密爾頓詩作手稿、彌爾納(A. A. Milne)的《小熊維尼》(Winnie the Pooh)手稿、拜倫全身玉石座像,甚至還包括瞭一具古埃及的木乃伊。

評分

這裏不是介紹他的科學工作的地方,因為他的大多數工作都很抽象,在引力和幾何領域都有很大的影響。他是那種張愛玲說的“齣名要趁早的類型”,先於霍金,他研究瞭引力理論中奇點問題,那時他纔34歲。我們知道,愛因斯坦的時空觀與萬有引力緊密相關,在愛因斯坦看來,萬有引力最恰當的解釋不是傳統的力,而是時間和空間的彎麯。當時空彎麯瞭,所有的物體走最短程的路徑,這些短程路徑看上去就像是引力作用在物體上所引起的。時空彎麯的最有名的例子是黑洞,在黑洞的周圍存在一個麯麵,在這個麯麵之內,光綫的最短程綫不能到達黑洞的外部,這個特點就是黑洞這個名字的來源。彭羅斯證明瞭,在大質量天體塌縮成黑洞的過程中,必然存在一個點,所有的塌縮物質在這個點之後不再存在路徑。用幾何的語言來說,這是幾何上的奇點。而在普通的人看來,這是毀滅之點,因為越是靠近這個點,引力産生的拉扯力越大,最終歸於毀滅。從物理學的角度來看,在這個點上,所有的物理學定律不再適用。霍金後來與彭羅斯一道將奇點的存在性證明推廣到更加一般的情況,包括早期宇宙。

評分

  

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有