機器學習實戰 | ||
定價 | 69.00 | |
齣版社 | 人民郵電齣版社 | |
版次 | 1 | |
齣版時間 | 2013年06月 | |
開本 | 16開 | |
作者 | [美] Peter Harrington 著;李銳,李鵬,麯亞東 等 譯 | |
裝幀 | 平裝 | |
頁數 | 332 | |
字數 | ||
ISBN編碼 | 9787115317957 |
介紹並實現機器學習的主流算法
麵嚮日常任務的高效實戰內容
《機器學習實戰》沒有從理論角度來揭示機器學習算法背後的數學原理,而是通過“原理簡述+問題實例+實際代碼+運行效果”來介紹每一個算法。學習計算機的人都知道,計算機是一門實踐學科,沒有真正實現運行,很難真正理解算法的精髓。這本書的好處就是邊學邊用,非常適閤於急需邁進機器學習領域的人員學習。實際上,即使對於那些對機器學習有所瞭解的人來說,通過代碼實現也能進一步加深對機器學習算法的理解。
《機器學習實戰》的代碼采用Python語言編寫。Python代碼簡單優雅、易於上手,科學計算軟件包眾多,已經成為不少大學和研究機構進行計算機教學和科學計算的語言。相信Python編寫的機器學習代碼也能讓讀者盡快領略到這門學科的精妙之處。
機器學習是計算機科學與人工智能的重要分支領域. 本書作為該領域的入門教材,在內容上盡可能涵蓋機器學習基礎知識的各方麵. 全書共16 章,大緻分為3 個部分:第1 部分(第1~3 章)介紹機器學習的基礎知識;第2 部分(第4~10 章)討論一些經*而常用的機器學習方法(決策樹、神經網絡、支持嚮量機、貝葉斯分類器、集成學習、聚類、降維與度量學習);第3 部分(第11~16 章)為進階知識,內容涉及特徵選擇與稀疏學習、計算學習理論、半監督學習、概率圖模型、規則學習以及強化學習等. 每章都附有習題並介紹瞭相關閱讀材料,以便有興趣的讀者進一步鑽研探索。
本書可作為高等院校計算機、自動化及相關專業的本科生或研究生教材,也可供對機器學習感興趣的研究人員和工程技術人員閱讀參考。
周誌華,南京大學計算機係教授,ACM傑齣科學傢,IEEE Fellow, IAPR Fellow, IET/IEE Fellow, 中國計算機學會會士。國傢傑齣青年科學基金獲得者、長江學者特聘教授。先後擔任多種SCI(E)期刊執行主編、副主編、副編輯、編委等。中國計算機學會人工智能與模式識彆專業委員會主任,中國人工智能學會機器學習專業委員會主任,IEEE計算智能學會數據挖掘技術委員會副主席。
目錄
第1章 1
1.1 引言 1
1.2 基本術 2
1.3 假設空間 4
1.4 歸納偏好 6
1.5 發展曆程 10
1.6 應用現狀 13
1.7 閱讀材料 16
習題 19
參考文獻 20
休息一會兒 22
第2章 模型評估與選擇 23
2.1 經驗誤差與過擬閤 23
評分
評分
評分
評分
評分
評分
評分
評分
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有