9787121335846 9787121323331 9787121311413 9787121306594 9787121305146 9787121313363 9787121310744
Python量化迴溯、TensorFlow、PyTorch、MXNet深度學習平颱以及神經網絡模型,都是近年來興起的前沿科技項目,相關理論、平颱、工具目前尚處於摸索階段。
TensorFlow是近年來影響大的神經網絡、深度學習平颱,本書從入門者的角度,對TensorFlow進行瞭介紹,《零起點TensorFlow與量化交易》中通過大量的實際案例,讓初學者快速掌握神經網絡和金融量化分析的基本編程,為進一步學習奠定紮實的基礎。
《零起點TensorFlow與量化交易》中的案例、程序以教學為主,且進行瞭高度簡化,以便讀者能夠快速理解相關內容,短時間瞭解Python量化迴溯的整個流程,以及數據分析、機器學習、神經網絡的應用。
《零起點TensorFlow與量化交易》僅僅作為入門課程,具體的實盤策略,有待廣大讀者通過進一步深入學習TensorFlow、PyTorch等新一代深度學習平颱來獲得。更重要的是,廣大的一綫實盤操作人員需要結閤的金融操盤經驗,與各種神經網絡模型融會貫通,構建更加符閤金融量化實際應用的神經網絡模型,從而獲得好的收益。
第1章 TensorFlow概述 1
1.1 TensorFlow要點概括 2
1.2 TensorFlow簡化接口 2
1.3 Keras簡介 3
1.4 運行環境模塊的安裝 4
1.4.1 CUDA運行環境的安裝 4
案例1-1:重點模塊版本測試 5
案例1-2:GPU開發環境測試 8
1.4.2 GPU平颱運行結果 9
第2章 無數據不量化(上) 12
2.1 金融數據源 13
2.1.1 TopDat金融數據集 14
2.1.2 量化分析與試錯成本 15
2.2 OHLC金融數據格式 16
案例2-1:金融數據格式 17
2.3 K綫圖 18
案例2-2:繪製金融數據K綫圖 19
2.4 Tick數據格式 22
案例2-3:Tick數據格式 23
2.4.1 Tick數據與分時數據轉換 25
案例2-4:分時數據 25
2.4.2 resample函數 26
2.4.3 分時數據 26
2.5 離綫金融數據集 29
案例2-5:TopDat金融數據集的日綫數據 29
案例2-6:TopDat金融數據集的Tick數據 31
2.6 TopDown金融數據下載 33
案例2-7:更新單一A股日綫數據 34
案例2-8:批量更新A股日綫數據 37
2.6.1 Tick數據與分時數據 40
案例2-9:更新單一A股分時數據 40
案例2-10:批量更新分時數據 43
2.6.2 Tick數據與實時數據 45
案例2-11:更新單一實時數據 45
案例2-12:更新全部實時數據 48
第3章 無數據不量化(下) 51
3.1 均值優先 51
案例3-1:均值計算與價格麯綫圖 52
3.2 多因子策略和泛因子策略 54
3.2.1 多因子策略 54
3.2.2 泛因子策略 55
案例3-2:均綫因子 55
3.3 “25日神定律” 59
案例3-3:時間因子 61
案例3-4:分時時間因子 63
3.4 TA-Lib金融指標 66
3.5 TQ智能量化迴溯 70
3.6 全內存計算 70
案例3-5:增強版指數索引 71
案例3-6:AI版索引數據庫 73
3.7 股票池 77
案例3-7:股票池的使用 77
3.8 TQ_bar全局變量類 81
案例3-8:TQ_bar初始化 82
案例3-9:TQ版本日綫數據 85
3.9 大盤指數 87
案例3-10:指數日綫數據 88
案例3-11:TQ版本指數K綫圖 89
案例3-12:個股和指數麯綫對照圖 92
3.10 TDS金融數據集 96
案例3-13:TDS衍生數據 98
案例3-14:TDS金融數據集的製作 102
案例3-15:TDS金融數據集2.0 105
案例3-16:讀取TDS金融數據集 108
第4章 人工智能與趨勢預測 112
4.1 TFLearn簡化接口 112
4.2 人工智能與統計關聯度分析 113
4.3 關聯分析函數corr 113
4.3.1 Pearson相關係數 114
4.3.2 Spearman相關係數 114
4.3.3 Kendall相關係數 115
4.4 open(開盤價)關聯性分析 115
案例4-1:open關聯性分析 115
4.5 數值預測與趨勢預測 118
4.5.1 數值預測 119
4.5.2 趨勢預測 120
案例4-2:ROC計算 120
案例4-3:ROC與交易數據分類 123
4.6 n+1大盤指數預測 128
4.6.1 綫性迴歸模型 128
案例4-4:上證指數n+1的開盤價預測 129
案例4-5:預測數據評估 133
4.6.2 效果評估函數 136
4.6.3 常用的評測指標 138
4.7 n+1大盤指數趨勢預測 139
案例4-6:漲跌趨勢歸一化分類 140
案例4-7:經典版漲跌趨勢歸一化分類 143
4.8 One-Hot 145
案例4-8:One-Hot格式 146
4.9 DNN模型 149
案例4-9:DNN趨勢預測 150
第5章 單層神經網絡預測股價 156
5.1 Keras簡化接口 156
5.2 單層神經網絡 158
案例5-1:單層神經網絡模型 158
5.3 神經網絡常用模塊 168
案例5-2:可視化神經網絡模型 170
案例5-3:模型讀寫 174
案例5-4:參數調優入門 177
第6章 MLP與股價預測 182
6.1 MLP 182
案例6-1:MLP價格預測模型 183
6.2 神經網絡模型應用四大環節 189
案例6-2:MLP模型評估 190
案例6-3:優化MLP價格預測模型 194
案例6-4:優化版MLP模型評估 197
第7章 RNN與趨勢預測 200
7.1 RNN 200
7.2 IRNN與趨勢預測 201
案例7-1:RNN趨勢預測模型 201
案例7-2:RNN模型評估 209
案例7-3:RNN趨勢預測模型2 211
案例7-4:RNN模型2評估 214
第8章 LSTM與量化分析 217
8.1 LSTM模型 217
8.1.1 數值預測 218
案例8-1:LSTM價格預測模型 219
案例8-2:LSTM價格預測模型評估 226
8.1.2 趨勢預測 230
案例8-3:LSTM股價趨勢預測模型 231
案例8-4:LSTM趨勢模型評估 239
8.2 LSTM量化迴溯分析 242
8.2.1 構建模型 243
案例8-5:構建模型 243
8.2.2 數據整理 251
案例8-6:數據整理 251
8.2.3 迴溯分析 262
案例8-7:迴溯分析 262
8.2.4 迴報分析 268
案例8-8:量化交易迴報分析 268
8.3 完整的LSTM量化分析程序 279
案例8-9:LSTM量化分析程序 280
8.3.1 數據整理 280
8.3.2 量化迴溯 284
8.3.3 迴報分析 285
8.3.4 迴報分析 288
第9章 日綫數據迴溯分析 293
9.1 數據整理 293
案例9-1:數據更新 294
案例9-2:數據整理 296
9.2 迴溯分析 307
9.2.1 迴溯主函數 307
9.2.2 交易信號 308
9.3 交易接口函數 309
案例9-3:迴溯分析 309
案例9-4:多模式迴溯分析 316
第10章 Tick數據迴溯分析 318
10.1 ffn金融模塊庫 318
案例10-1:ffn功能演示 318
案例10-2:量化交易迴報分析 330
案例10-3:完整的量化分析程序 343
10.2 Tick分時數據量化分析 357
案例10-4:Tick分時量化分析程序 357
總結 371
附錄A TensorFlow 1.1函數接口變化 372
附錄B 神經網絡常用算法模型 377
附錄C 機器學習常用算法模型 414
零起點Python足彩大數據與機器學習實盤分析
本書采用Python編程語言、Pandas數據分析模塊、機器學習和人工智能算法,對足彩大數據進行實盤分析。設計並發布瞭開源大數據項目zc-dat足彩數據包,匯總瞭2010—2016年5萬餘場足球比賽的賽事和賠率數據,包括威廉希爾、澳門、立博、Bet365、Interwetten、SNAI、皇冠、易勝博、偉德、必發等各大賠率公司。介紹瞭如何使用Python語言抓取網頁數據,下載更新zc-dat足彩數據包,並預測分析比賽獲勝球隊的取勝概率,同時提齣瞭檢測人工智能算法優劣的“足彩圖靈”法則。
Python金融衍生品大數據分析:建模、模擬、校準與對衝
Python在數據分析領域得到瞭越來越廣泛的應用。一部分著眼於對股市指數期權的價值、股票、利率的影響。第二部分介紹套利定價理論、離散時間內中性估值,持續時間,介紹瞭兩種流行的期權定價方法。後,第三部分介紹市場估值工作的整個過程。
量化投資:以Python為工具
Python在數據分析領域得到瞭越來越廣泛的應用。部分著眼於對股市指數期權的價值、股票、利率的影響。第二部分介紹套利定價理論、離散時間內中性估值,持續時間,介紹瞭兩種流行的期權定價方法。後,第三部分介紹市場估值工作的整個過程。
零起點Python大數據與量化交易
本書是國內較早關於Python大數據與量化交易的原創書籍,配閤zwPython、zwQuant開源量化軟件學習,已經是一套完整的大數據分析、量化交易學習教材,可直接用於實盤交易。本書特色:一,以實盤個案分析為主,全程配有Python代碼;第二,包含大量的圖文案例和Python源碼,無須編程基礎,懂Excel即可開始學習;第三,配有的zwPython、zwQuant量化軟件和zwDat數據包。本書內容源自筆者的原版教學課件,雖然限於篇幅和載體,省略瞭視頻和部分環節,但核心內容都有保留,配套的近百套Python教學程序沒有進行任何刪減。考慮到廣大入門讀者的需求,筆者在各個核心函數環節增添瞭函數流程圖。
零起點Python機器學習快速入門
本書采用的黑箱模式,MBA案例教學機製,結閤一綫實戰案例,介紹Sklearn人工智能模塊庫和常用的機器學習算法。書中配備大量圖錶說明,沒有枯燥的數學公式,普通讀者,隻要懂Word、Excel,就能夠輕鬆閱讀全書,並學習使用書中的知識,分析大數據。本書具有以下特色:的黑箱教學模式,全書無任何抽象理論和深奧的數學公式。化融閤Sklearn人工智能軟件和Pandas數據分析軟件,不用再直接使用復雜的Numpy數學矩陣模塊。化的Sklearn函數和API中文文檔,可作為案頭工具書隨時查閱。基於Sklearn+Pandas模式,無須任何理論基礎,全程采用MBA案例模式,懂Excel就可看懂。
零起點TensorFlow快速入門
TensorFlow是近年來影響大的神經網絡和深度學習平颱,本書以生動活潑的語言,從入門者的角度,對TensorFlow進行介紹,書中包含大量簡單風趣的實際案例,如孤獨的神經元、梵高畫風等,讓廣大初學者快速掌握神經網絡的基本編程,為進一步學習人工智能奠定紮實的基礎。
評分
評分
評分
評分
評分
評分
評分
評分
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版權所有