代数数论,将整数环的数论性质研究扩展到了更一般的整环上,特别是代数数域。一个主要课题就是关于代数整数的研究,目标是为了更一般地解决不定方程求解的问题。其中一个主要的历史动力来自于寻找费马大定理的证明。
评分3.3 最大公因子
评分本书是作者在英文版 (新加坡世界科学出版社1996年出版)的基础上增补而成。与现行的关于数论的大量专著不同(那些专著通常只讲述某一个方向上的深刻结果),本书系统连贯地讲述了有限域上的Riemann假设(Weil猜想)、函数域上的Riemann-Roch定理、Zeta函数和L-函数、特征和估计、(复)模形式、自守表示及其在通讯上的应用。本书阐述线索清晰,使读者能顺利地理解现代代数数论的解析理论中的重要部分的来龙去脉。本书也比较容易阅读:对于可以用初等方法证明的大量结果给出了完整的证明;对于较艰深的内容则给出适当的参考文献,以便有兴趣的读者进一步学习。这种专著目前尚不多见。本书可作为代数数论方向研究生的教科书,也可以作为代数数论、解析数论、表示论、函数论,以及通讯理论方向的学者及研究生的参考文献。作者李文卿教授于70年代在美国Berkeley获博士学位,从事数论方向研究已有二十多年的经历,现任美国Pennsylvania州立大学教授,是世界知名的数学家。
评分借助微积分及复分析(即复变函数)来研究关于整数的问题,主要又可以分为乘性数论与加性数论两类。乘性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。
评分人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数浅薄地划分可分为两大类—奇数和偶数(通常被称为单数、双数);深刻地划分可以分为素数,合数,“1”等。两千多年来,数论学有一个重要的任务,就是寻找素数性质及分布规律,为此,花费了巨大的心血。利用素数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。
评分10.1 伪随机数
评分自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。
评分9.2 素数的原根
评分本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有