黎曼几何 [Riemannian Geometry]

黎曼几何 [Riemannian Geometry] 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
[葡] 卡莫 著

下载链接在页面底部
下载链接1
下载链接2
下载链接3
    


想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-06-16

图书介绍


出版社: 世界图书出版公司
ISBN:9787506292184
版次:1
商品编码:10096470
包装:平装
外文名称:Riemannian Geometry
开本:24开
出版时间:2008-05-01
用纸:胶版纸
页数:300
正文语种:英语


类似图书 点击查看全场最低价

相关图书





图书描述

编辑推荐

  《黎曼几何》非常值得一读。

内容简介

  The object of this book is to familiarize the reader with the basic language of and some fundamental theorems in Riemannian Geometry. To avoid referring to previous knowledge of differentiable manifolds, we include Chapter 0, which contains those concepts and results on differentiable manifolds which are used in an essential way in the rest of the book。
  The first four chapters of the book present the basic concepts of Riemannian Geometry (Riemannian metrics, Riemannian connections, geodesics and curvature). A good part of the study of Riemannian Geometry consists of understanding the relationship between geodesics and curvature. Jacobi fields, an essential tool for this understanding, are introduced in Chapter 5. In Chapter 6 we introduce the second fundamental form associated with an isometric immersion, and prove a generalization of the Theorem Egregium of Gauss. This allows us to relate the notion of curvature in Riemannian manifolds to the classical concept of Gaussian curvature for surfaces。

内页插图

目录

Preface to the first edition
Preface to the second edition
Preface to the English edition
How to use this book
CHAPTER 0-DIFFERENTIABLE MANIFOLDS
1. Introduction
2. Differentiable manifolds;tangent space
3. Immersions and embeddings;examples
4. Other examples of manifolds,Orientation
5. Vector fields; brackets,Topology of manifolds

CHAPTER 1-RIEMANNIAN METRICS
1. Introduction
2. Riemannian Metrics

CHAPTER 2-AFFINE CONNECTIONS;RIEMANNIAN CONNECTIONS
1. Introduction
2. Affine connections
3. Riemannian connections

CHAPTER 3-GEODESICS;CONVEX NEIGHBORHOODS
1.Introduction
2.The geodesic flow
3.Minimizing properties ofgeodesics
4.Convex neighborhoods

CHAPTER 4-CURVATURE
1.Introduction
2.Curvature
3.Sectional curvature
4.Ricci curvature and 8calar curvature
5.Tensors 0n Riemannian manifoids

CHAPTER 5-JACOBI FIELDS
1.Introduction
2.The Jacobi equation
3.Conjugate points

CHAPTER 6-ISOMETRIC IMMERSl0NS
1.Introduction.
2.The second fundamental form
3.The fundarnental equations

CHAPTER 7-COMPLETE MANIFoLDS;HOPF-RINOW AND HADAMARD THEOREMS
1.Introduction.
2.Complete manifolds;Hopf-Rinow Theorem.
3.The Theorem of Hadamazd.

CHAPTER 8-SPACES 0F CONSTANT CURVATURE
1.Introduction
2.Theorem of Cartan on the determination ofthe metric by mebns of the curvature.
3.Hyperbolic space
4.Space forms
5.Isometries ofthe hyperbolic space;Theorem ofLiouville

CHAPTER 9一VARIATl0NS 0F ENERGY
1.Introduction.
2.Formulas for the first and second variations of enezgy
3.The theorems of Bonnet—Myers and of Synge-WeipJtein

CHAPTER 10-THE RAUCH COMPARISON THEOREM
1.Introduction
2.Ttle Theorem of Rauch.
3.Applications of the Index Lemma to immersions
4.Focal points and an extension of Rauch’s Theorem

CHAPTER 11—THE MORSE lNDEX THEOREM
1.Introduction
2.The Index Theorem

CHAPTER 12-THE FUNDAMENTAL GROUP OF MANIFOLDS 0F NEGATIVE CURVATURE
1.Introduction
2.Existence of closed geodesics
CHAPTER 13-THE SPHERE THEOREM
References
Index

前言/序言



黎曼几何 [Riemannian Geometry] 下载 mobi epub pdf txt 电子书 格式

黎曼几何 [Riemannian Geometry] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

黎曼几何 [Riemannian Geometry] 下载 mobi pdf epub txt 电子书 格式 2025

黎曼几何 [Riemannian Geometry] 下载 mobi epub pdf 电子书
想要找书就要到 新城书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

  读这本书时,偶然还想到了我们日常对狂狷的理解大都错了。《论语·子路》中云:“不得中行而与之,必也狂狷乎。狂者进取,狷者有所不为也。”狂狷一词可以分开解,“狂”是对自己来说,“狷”是面对这个世界来说——自我进取,追求超越,是为狂;沉默以对,不敏俗事,是为狷。反观那些文青艺青,其狂不过作态,其狷更不必说。惟有一个人道德无亏,才有资格评价那些道德有亏的。——“你们中间谁是没有罪的,谁就可以先拿石头打她。”(《约翰福音》)

评分

  希望自己不做俎肉,而是一条活生生的游魂!

评分

  等待是最优雅的姿势,但这并非意味着人丧失主动选择的能力。我们之于以往行为感到合理也有自我解释的因素在里面——它原本有理由更加合理。对比大陆和台湾的六七十年代,实不能说哪一个社会环境更高压。个人在大环境下不一定就是浮游生物。他可以逆流而上。至少八十年代的李敖,那时他也处望五之年,就在党外创办杂志。每月出一期,一期十万字,全部自己包办。

评分

黎曼几何最经典的教材~

评分

很不错的书呢,赞一个好评呢

评分

goodgood

评分

测N95雷区呢就我发淋雨slow退恶徒咯五KKK

评分

微分几何 - 产生

评分

截面曲率、里奇曲率以及数量曲率是非常重要的几何量。研究这些量与黎曼流形的几何性质以及拓扑性质之间的关系是黎曼几何的一个重要课题。例如,嘉当-阿达马定理断言:若一个n维单连通完备黎曼流形的截面曲率处处不大于零,那么它与Rn微分同胚。再如迈尔斯定理断言:若完备黎曼流形的里奇曲率处处大于一个正常数h,那么它必是紧流形而且基本群有限。W.克林格贝格和M.伯热证明的球定理断言:如果完备单连通n维黎曼流形M的截面曲率KM 满足,那么M与n维欧氏球面Sn同胚。这些结果显示了流形的拓扑性质与度量性质之间有密切的联系。在这方面还有许多未解决的问题。

类似图书 点击查看全场最低价

黎曼几何 [Riemannian Geometry] mobi epub pdf txt 电子书 格式下载 2025


分享链接




相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.cndgn.com All Rights Reserved. 新城书站 版权所有