內容簡介
As the the title suggests, the goal of this book is to give the reader a taste of the “unreasonable effectiveness” of Morse theory. The main idea behind thistechnique can be easily visualized.
Suppose M is a smooth, compact manifold, which for simplicity we as-sume is embedded in a Euclidean space E. We would like to understand basictopological invariants of M such as its homology, and we attempt a “slicing” technique.
目錄
Preface
Notations and conventions
1 Morse Functions
1.1 The Local Structure of Morse Functions
1.2 Existence of Morse Functions
2 The Topology of Morse Functions
2.1 Surgery,Handle Attachment.and Cobordisms
2.2 The Topology of Sublevel Sets
2.3 Morse Inequalities
2.4 Morse-Smale Dynamics
2.5 Morse-Floer Homology
2.6 Morse-Bott Functions
2.7 Min-Max Theory
3 Applications
3.1 The Cohomology of Complex Grassmannians
3.2 Lefschetz Hyperplane Theorem
3.3 Symplectic Manifolds and Hamiltonian Flows
3.4 Morse Theory of Moment Maps
3.5 S1-Equivariant Localization
4 Basics of Comple X Morse Theory
4.1 Some Fundamental Constructions
4.2 Topological Applications of Lefschetz Pencils
4.3 The Hard Lefschetz Theorem
4.4 Vanishing Cycles and Local Monodromy
4.5 Proofofthe Picard Lefschetz formula
4.6 Global Picard-Lefschetz Formulae
5 Exercises and Solutions
5.1 Exercises
5.2 Solutions to Selected Exercises
References
Index
前言/序言
As the the title suggests, the goal of this book is to give the reader a taste of the “unreasonable effectiveness” of Morse theory. The main idea behind thistechnique can be easily visualized.
Suppose M is a smooth, compact manifold, which for simplicity we as-sume is embedded in a Euclidean space E. We would like to understand basictopological invariants of M such as its homology, and we attempt a “slicing” technique.
We fix a unit vector u in E and we start slicing M with the family of hyperplanes perpendicular to u. Such a hyperplane will in general intersectM along a submanifold (slice). The manifold can be recovered by continuouslystacking the slices on top of each other in the same order as they were cut out of M.
Think of the collection of slices as a deck of cards of various shapes. If welet these slices continuously pile up in the order they were produced, we noticean increasing stack of slices. As this stack grows, we observe that there aremoments of time when its shape suffers a qualitative change. Morse theoryis about extracting quantifiable information by studying the evolution of theshape of this growing stack of slices.
莫爾斯理論入門 [An Invitation to Morse Theory] 下載 mobi epub pdf txt 電子書 格式
莫爾斯理論入門 [An Invitation to Morse Theory] 下載 mobi pdf epub txt 電子書 格式 2025
評分
☆☆☆☆☆
Morse theory
評分
☆☆☆☆☆
2 微分幾何的測地綫
評分
☆☆☆☆☆
應該是比較適閤初學者的書,而且也不是很厚,值得一看。
評分
☆☆☆☆☆
1 三維空間中的麯麵
評分
☆☆☆☆☆
在適當的小範圍內聯結任意兩點的測地綫是最短綫,所以測地綫又稱為短程綫。
評分
☆☆☆☆☆
微分幾何的測地綫
評分
☆☆☆☆☆
評分
☆☆☆☆☆
應該是比較適閤初學者的書,而且也不是很厚,值得一看。
評分
☆☆☆☆☆
的分支。它是H.M.莫爾斯在20世紀30年代創立的。由莫爾斯理論得知 ,微分流形與其上的光滑函數緊密相關,利用光滑函數不僅能研究微分流形的局部性質,而且某些光滑函數例如莫爾斯函數包含瞭刻劃流形整體性質的豐富信息。莫爾斯理論主要分兩部分,一是臨界點理論,一是它在大範圍變分問題上的應用。一個莫爾斯函數也是一個非簡諧振子的一種錶達法。
莫爾斯理論入門 [An Invitation to Morse Theory] mobi epub pdf txt 電子書 格式下載 2025