内容简介
The present book strives for clarity and transparency. Right from the begin-ning, it requires from the reader a willingness to deal with abstract concepts, as well as a considerable measure of self-initiative. For these e&,rts, the reader will be richly rewarded in his or her mathematical thinking abilities, and will possess the foundation needed for a deeper penetration into mathematics and its applications.
This book is the first volume of a three volume introduction to analysis. It de- veloped from. courses that the authors have taught over the last twenty six years at the Universities of Bochum, Kiel, Zurich, Basel and Kassel. Since we hope that this book will be used also for self-study and supplementary reading, we have included far more material than can be covered in a three semester sequence. This allows us to provide a wide overview of the subject and to present the many beautiful and important applications of the theory. We also demonstrate that mathematics possesses, not only elegance and inner beauty, but also provides efficient methods for the solution of concrete problems.
内页插图
目录
Preface
Chapter Ⅰ Foundations
1 Fundamentals of Logic
2 Sets
Elementary Facts
The Power Set
Complement, Intersection and Union
Products
Families of Sets
3 Functions,
Simple Examples
Composition of Functions
Commutative Diagrams
Injections, Surjections and Bijections
Inverse Functions
Set Valued Functions
4 Relations and Operations
Equivalence Relations
Order Relations
Operations
5 The Natural Numbers
The Peano Axioms
The Arithmetic of Natural Numbers
The Division Algorithm
The Induction Principle
Recursive Definitions
6 Countability
Permutations
Equinumerous Sets
Countable Sets
Infinite Products
7 Groups and Homomorphisms
Groups
Subgroups
Cosets
Homomorphisms
Isomorphisms
8 R.ings, Fields and Polynomials
Rings
The Binomial Theorem
The Multinomial Theorem
Fields
Ordered Fields
Formal Power Series
Polynomials
Polynomial Functions
Division of Polynomiajs
Linear Factors
Polynomials in Several Indeterminates
9 The Rational Numbers
The Integers
The Rational Numbers
Rational Zeros of Polynomials
Square Roots
10 The Real Numbers
Order Completeness
Dedekind's Construction of the Real Numbers
The Natural Order on R
The Extended Number Line
A Characterization of Supremum and Infimum
The Archimedean Property
The Density of the Rational Numbers in R
nth Roots
The Density of the Irrational Numbers in R
Intervals
Chapter Ⅱ Convergence
Chapter Ⅲ Continuous Functions
Chapter Ⅳ Differentiation in One Variable
Chapter Ⅴ Sequences of Functions
Appendix Introduction to Mathematical Logic
Bibliography
Index
前言/序言
Logical thinking, the analysis of complex relationships, the recognition of under- lying simple structures which are common to a multitude of problems - these are the skills which are needed to do mathematics, and their development is the main goal of mathematics education.
Of course, these skills cannot be learned 'in a vacuum'. Only a continuous struggle with concrete problems and a striving for deep understanding leads to success. A good measure of abstraction is needed to allow one to concentrate on the essential, without being distracted by appearances and irrelevancies.
The present book strives for clarity and transparency. Right from the begin-ning, it requires from the reader a willingness to deal with abstract concepts, as well as a considerable measure of self-initiative. For these e&,rts, the reader will be richly rewarded in his or her mathematical thinking abilities, and will possess the foundation needed for a deeper penetration into mathematics and its applications.
This book is the first volume of a three volume introduction to analysis. It de- veloped from. courses that the authors have taught over the last twenty six years at the Universities of Bochum, Kiel, Zurich, Basel and Kassel. Since we hope that this book will be used also for self-study and supplementary reading, we have included far more material than can be covered in a three semester sequence. This allows us to provide a wide overview of the subject and to present the many beautiful and important applications of the theory. We also demonstrate that mathematics possesses, not only elegance and inner beauty, but also provides efficient methods for the solution of concrete problems.
Analysis itself begins in Chapter II. In the first chapter we discuss qLute thor- oughly the construction of number systems and present the fundamentals of linear algebra. This chapter is particularly suited for self-study and provides practice in the logical deduction of theorems from simple hypotheses. Here, the key is to focus on the essential in a given situation, and to avoid making unjustified assumptions.An experienced instructor can easily choose suitable material from this chapter to make up a course, or can use this foundational material as its need arises in the study of later sections.
……
分析(第1卷) [Analysis 1] 下载 mobi epub pdf txt 电子书 格式
评分
☆☆☆☆☆
这套书给人的感觉有点不上不下。具体来说,作者(基本上是)打算避开集合论公理和数理逻辑,但又花了十几页的功夫去描述这两个东西,而且还是在避免使用符号语言的情况下,使用自然语言来说明的.......嘛,因为原文是德文,说明上应该会比这英译本的要严格一些,但是这英译本就......举个例子来讲,英译本中一会儿用英语“and”来表示逻辑符号里的"AND",一会儿又用“and”来表示逻辑符号里的"INCLUSIVE OR"。都无语了......
评分
☆☆☆☆☆
这套书给人的感觉有点不上不下。具体来说,作者(基本上是)打算避开集合论公理和数理逻辑,但又花了十几页的功夫去描述这两个东西,而且还是在避免使用符号语言的情况下,使用自然语言来说明的.......嘛,因为原文是德文,说明上应该会比这英译本的要严格一些,但是这英译本就......举个例子来讲,英译本中一会儿用英语“and”来表示逻辑符号里的"AND",一会儿又用“and”来表示逻辑符号里的"INCLUSIVE OR"。都无语了......
评分
☆☆☆☆☆
总的来说,它们的证明简洁和逻辑但需要一些耐心跟随。当做出一个论点,作者经常引用前题一个b。c和定理x y。没有显式地声明校长z,他们正在使用,即使它可能有一个名字。因此,作为一个读者,你要么必须愿意遵循面包屑他们提供或确保你明白为什么他们的论证工作。这真的不是一个批评,只是一个观察。因为这个原因虽然,如果你打算买卷的工作,您N必须买卷N - 1。在每一卷,作者承认的序言中,他们的是太多的材料覆盖在一个学期;事实上,至少有足够的材料在每个卷为一个学年工作的价值。
评分
☆☆☆☆☆
注意Hilbert space一定是Banach space,而Hilbert space 和 Banach space都是特殊的topological vector space。的确,所以老一点的书都直接定义Hilbert space是l^2,因为那时都假设有一个可数的orthonormal basis。看谢惠民吧,那个什么多维骑还是放一边。不过答案只有提示,很多答案可以在薛春华中找我看一本数学书大概三百页厚,半个月看不完啊,一天也就看两三页,看得时间也不多,就两三个钟,还消化不良,有时候想赶快看越快看越学得少与不懂。你们都是怎么看书的,来跟大家分享下吧!
评分
☆☆☆☆☆
人都是有局限性的,「提升自我」这件事不只是技能上的提升,更核心的是视野、理念、思维方式这些意识世界里的东西。「读史使人明智,读诗使人灵秀,数学使人周密,科学使人深刻,伦理学使人庄重,逻辑修辞之学使人善辩:凡有所学,皆成性格。」第
评分
☆☆☆☆☆
这本书覆盖了从入门机械制图工程师/技师所必需知道的关于产业的知识。书中还覆盖了所必需的进阶知识。 《实分析教程(第2版)(英文影印版)》是一部备受专家好评的教科书,书中用现代的方式清晰论述了实分析的概念与理论,定理证明简明易懂,可读性强。在第一版的基础上做了全面修订,有200道例题,练习题由原来的1200道增加到1300习题。本书的写法像一部文学读物,这在数学教科书很少见,因此阅读本书会是一种享受。
评分
☆☆☆☆☆
阿曼和埃舍尔的分析,第一卷连同第二和第三卷,组成了一个令人难以置信的丰富、全面、独立的对于高等的分析基础的处理。从集合论和实数的构建,作者继续引理、定理,定理证明的声明和斯托克的定理在最后一章的流形体积三世。
评分
☆☆☆☆☆
拓扑结构的基本概念如连通性、密实度和介绍了homeomorphisms早期使用作为一个基础,证明将远不及优雅的(和不直接)否则。例如,介值定理,证明了结果的连接的一个空间。一旦这是结果确定下来的普遍性,它讨论了R。
评分
☆☆☆☆☆
一、不同人生阶段、不同认知水平对应的“有效读书”标准不一样